Robustness of raman plasma amplifiers and their potential for attosecond pulse generation
High Energy Density Physics Elsevier 23 (2017) 212-216
Abstract:
Raman back-scatter from an under-dense plasma can be used to compress laser pulses, as shown by several previous experiments in the optical regime. A short seed pulse counter-propagates with a longer pump pulse and energy is transferred to the shorter pulse via stimulated Raman scattering. The robustness of the scheme to non-ideal plasma density conditions is demonstrated through particle-in-cell simulations. The scale invariance of the scheme ensures that compression of XUV pulses from a free electron laser is also possible, as demonstrated by further simulations. The output is as short as 300 as, with energy typical of fourth generation sources.Magnetic field production via the Weibel instability in interpenetrating plasma flows
Physics of Plasmas American Institute of Physics 24:4 (2017) 041410
Abstract:
Many astrophysical systems are effectively “collisionless,” that is, the mean free path for collisions between particles is much longer than the size of the system. The absence of particle collisions does not preclude shock formation, however, as shocks can be the result of plasma instabilities that generate and amplify electromagnetic fields. The magnetic fields required for shock formation may either be initially present, for example, in supernova remnants or young galaxies, or they may be self-generated in systems such as gamma-ray bursts (GRBs). In the case of GRB outflows, the Weibel instability is a candidate mechanism for the generation of sufficiently strong magnetic fields to produce shocks. In experiments on the OMEGA Laser, we have demonstrated a quasi-collisionless system that is optimized for the study of the non-linear phase of Weibel instability growth. Using a proton probe to directly image electromagnetic fields, we measure Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows. The collisionality of the system is determined from coherent Thomson scattering measurements, and the data are compared to similar measurements of a fully collisionless system. The strong, persistent Weibel growth observed here serves as a diagnostic for exploring large-scale magnetic field amplification and the microphysics present in the collisional-collisionless transition.Blind digital holographic microscopy
ractical Holography XXXI: Materials and Applications; Society of Photo-Optical Instrumentation Engineers (2017)
Abstract:
A blind variant of digital holographic microscopy is presented that removes the requirement for a well-characterized, highly divergent reference beam. This is achieved by adopting an off-axis recording geometry where a sequence of holograms is recorded as the reference is tilted, and an iter ative algorithm that estimates the amplitudes and phases of both beams while simultaneously enhancing the numerical aperture. Numerical simulations have demonstrated the accuracy and robustness of this approach when applied to the coherent imaging problem.High flux, beamed neutron sources employing deuteron-rich ion beams from D 2 O-ice layered targets
Plasma Physics and Controlled Fusion Institute of Physics 59:6 (2017) 064004
Abstract:
A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (∼200 J, ∼750 fs) at peak intensity . The neutrons were preferentially produced in a beam of ∼70 FWHM cone along the ion beam forward direction, with maximum energy up to ∼40 MeV and a peak flux along the axis for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.Machine learning applied to proton radiography of high-energy-density plasmas
Physical Review E American Physical Society 95:4 (2017) 043305