Essential criteria for efficient pulse amplification via Raman and Brillouin scattering
(2016)
Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet
Nature Communications Nature Publishing Group (2016)
Abstract:
The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.A compact, low cost Marx bank for generating capillary discharge plasmas
Review of Scientific Instruments AIP Publishing 87:093302 (2016)
Abstract:
We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500A pulses of approximately 100–200 ns duration. One application is the generation of capillary discharge plasmas of density ≈ 1018 cm3 used in laser plasma accelerators. The CMB is tiggered with a high speed solid state switch and gives a HV output pulse with a ns scale rise time into a 50Ω load (coaxial cable) with < 4 ns voltage jitter. Its small size (10 cm × 25 cm × 5 cm) means that it can be placed right next to the capillary discharge in the target chamber so avoiding the need to impedance match. The electrical energy required per discharge is < 1 J and the CMB can be run at shot repetition rates of >∼ 1 Hz. This low power requirement means the circuit can easily be powered by a small lead acid battery and so therefore can be floated relative to laboratory earth. The CMB is readily scalable and pulses > 45 kV are demonstrated in air discharges.Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Elsevier 829 (2016) 176-180