The Cherenkov Telescope Array transient and multi-messenger program
Proceedings of Science 395 (2022)
Abstract:
The Cherenkov Telescope Array (CTA) is a next generation ground-based very-high-energy gamma-ray observatory that will allow for observations in the >10 GeV range with unprecedented photon statistics and sensitivity. This will enable the investigation of the yet-marginally explored physics of short-time-scale transient events. CTA will thus become an invaluable instrument for the study of the physics of the most extreme and violent objects and their interactions with the surrounding environment. The CTA Transient program includes follow-up observations of a wide range of multi-wavelength and multi-messenger alerts, ranging from compact galactic binary systems to extragalactic events such as gamma-ray bursts (GRBs), core-collapse supernovae and bright AGN flares. In recent years, the first firm detection of GRBs by current Cherenkov telescope collaborations, the proven connection between gravitational waves and short GRBs, as well as the possible neutrino-blazar association with TXS 0506+056 have shown the importance of coordinated follow-up observations triggered by these different cosmic signals in the framework of the birth of multi-messenger astrophysics. In the next years, CTA will play a major role in these types of observations by taking advantage of its fast slewing (especially for the CTA Large Size Telescopes), large effective area and good sensitivity, opening new opportunities for time-domain astrophysics in an energy range not affected by selective absorption processes typical of other wavelengths. In this contribution we highlight the common approach adopted by the CTA Transients physics working group to perform the study of transient sources in the very-high-energy regime.Update on the Combined Analysis of Muon Measurements from Nine Air Shower Experiments
Proceedings of Science 395 (2022)
Abstract:
Over the last two decades, various experiments have measured muon densities in extensive air showers over several orders of magnitude in primary energy. While some experiments observed differences in the muon densities between simulated and experimentally measured air showers, others reported no discrepancies. We will present an update of the meta-analysis of muon measurements from nine air shower experiments, covering shower energies between a few PeV and tens of EeV and muon threshold energies from a few 100 MeV to about 10GeV. In order to compare measurements from different experiments, their energy scale was cross-calibrated and the experimental data has been compared using a universal reference scale based on air shower simulations. Above 10 PeV, we find a muon excess with respect to simulations for all hadronic interaction models, which is increasing with shower energy. For EPOS-LHC and QGSJet-II.04 the significance of the slope of the increase is analyzed in detail under different assumptions of the individual experimental uncertainties.Evolving heterotic gauge backgrounds: genetic algorithms versus reinforcement learning
Fortschritte der Physik Wiley 70:5 (2022) 2200034
Abstract:
The immensity of the string landscape and the difficulty of identifying solutions that match the observed features of particle physics have raised serious questions about the predictive power of string theory. Modern methods of optimisation and search can, however, significantly improve the prospects of constructing the standard model in string theory. In this paper we scrutinise a corner of the heterotic string landscape consisting of compactifications on Calabi-Yau three-folds with monad bundles and show that genetic algorithms can be successfully used to generate anomaly-free supersymmetric (Formula presented.) GUTs with three families of fermions that have the right ingredients to accommodate the standard model. We compare this method with reinforcement learning and find that the two methods have similar efficacy but somewhat complementary characteristics.Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore
Physical Review D American Physical Society (APS) 105:6 (2022) 062004