Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube

European Physical Journal C Springer Berlin Heidelberg C75:3 (2015) 116-116

Abstract:

We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.

On the universal identity in second order hydrodynamics

Journal of High Energy Physics Springer Nature 2015:3 (2015) 7

Authors:

S Grozdanov, AO Starinets

Heterotic QCD axion

Physical Review D American Physical Society (APS) 91:4 (2015) 046010

Authors:

Evgeny I Buchbinder, Andrei Constantin, Andre Lukas

Hypercharge flux in heterotic compactifications

Physical Review D American Physical Society (APS) 91:4 (2015) 046008

Authors:

Lara B Anderson, Andrei Constantin, Seung-Joo Lee, Andre Lukas

SoftKiller, a particle-level pileup removal method

European Physical Journal C Springer Nature 75:2 (2015) 59

Authors:

Matteo Cacciari, Gavin P Salam, Gregory Soyez