Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

Physical Review D American Physical Society D91:2 (2015) 022001-022001

Authors:

Aartsen, Subir Sarkar

Abstract:

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis. Astrophysical neutrinos remain the dominant component in the southern sky down to 10 TeV. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum, $\Phi_{\nu} = 2.06^{+0.4}_{-0.3} \times 10^{-18} \left({E_{\nu}}/{10^5 \,\, \rm{GeV}} \right)^{-2.46 \pm 0.12} {\rm {GeV^{-1} \, cm^{-2} \, sr^{-1} \, s^{-1}} } $, as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere, 1.52 times the benchmark theoretical prediction used in previous IceCube results at 90\% confidence.

A 3.55 keV line from DM → a → γ: predictions for cool-core and non-cool-core clusters

Journal of Cosmology and Astroparticle Physics IOP Publishing 2015:01 (2015) 019-019

Authors:

Joseph P Conlon, Andrew J Powell

ALP conversion and the soft X-ray excess in the outskirts of the Coma cluster

Journal of Cosmology and Astroparticle Physics IOP Publishing 2015:01 (2015) 011-011

Authors:

David Kraljic, Markus Rummel, Joseph P Conlon

Full-sky analysis of cosmic-ray anisotropy with IceCube and HAWC

Proceedings of Science 30-July-2015 (2015)

Authors:

JC Díaz-Vélez, D Fiorino, P Desiati, S Westerhoff, E De La Fuente

Abstract:

During the past two decades, experiments in both the Northern and Southern hemispheres have observed a small but measurable energy-dependent sidereal anisotropy in the arrival direction distribution of galactic cosmic rays. The relative amplitude of the anisotropy is 10-4 -10-3. However, each of these individual measurements is restricted by limited sky coverage, and so the pseudo-power spectrum of the anisotropy obtained from any one measurement displays a systematic correlation between different multipole modes C. To address this issue, we present the preliminary status of a joint analysis of the anisotropy on all angular scales using cosmic-ray data from the IceCube Neutrino Observatory located at the South Pole (90 S) and the High-Altitude Water Cherenkov (HAWC) Observatory located at Sierra Negra, Mexico (19 N). We describe the methods used to combine the IceCube and HAWC data, address the individual detector systematics and study the region of overlapping field of view between the two observatories.

Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo: IceCube Collaboration

European Physical Journal C (2015)

Authors:

M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, J Auffenberg, X Bai, SW Barwick, V Baum, JJ Beatty, J Becker Tjus, KH Becker, S BenZvi, P Berghaus, D Berley, E Bernardini, A Bernhard, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, C Bohm, F Bos, D Bose, S Böser, O Botner, L Brayeur, HP Bretz, AM Brown, J Casey, M Casier, D Chirkin, A Christov, B Christy, K Clark, L Classen, F Clevermann, S Coenders, DF Cowen, AH Cruz Silva, M Danninger, J Daughhetee

Abstract:

© 2015, The Author(s). Dark matter which is bound in the Galactic halo might self-annihilate and produce a flux of stable final state particles, e.g. high energy neutrinos. These neutrinos can be detected with IceCube, a cubic-kilometer sized Cherenkov detector. Given IceCube’s large field of view, a characteristic anisotropy of the additional neutrino flux is expected. In this paper we describe a multipole method to search for such a large-scale anisotropy in IceCube data. This method uses the expansion coefficients of a multipole expansion of neutrino arrival directions and incorporates signal-specific weights for each expansion coefficient. We apply the technique to a high-purity muon neutrino sample from the Northern Hemisphere. The final result is compatible with the null-hypothesis. As no signal was observed, we present limits on the self-annihilation cross-section averaged over the relative velocity distribution (Formula Presented.) down to ([Formula Presented.) for a dark matter particle mass of 700–1,000 GeV and direct annihilation into (Formula Presented.). The resulting exclusion limits come close to exclusion limits from γ-ray experiments, that focus on the outer Galactic halo, for high dark matter masses of a few TeV and hard annihilation channels.