GZK Neutrinos after the Fermi-LAT Diffuse Photon Flux Measurement
(2010)
New Physics at the LHC. A Les Houches Report: Physics at TeV Colliders 2009 - New Physics Working Group
ArXiv 1005.1229 (2010)
Abstract:
We present a collection of signatures for physics beyond the standard model that need to be explored at the LHC. First, are presented various tools developed to measure new particle masses in scenarios where all decays include an unobservable particle. Second, various aspects of supersymmetric models are discussed. Third, some signatures of models of strong electroweak symmetry are discussed. In the fourth part, a special attention is devoted to high mass resonances, as the ones appearing in models with warped extra dimensions. Finally, prospects for models with a hidden sector/valley are presented. Our report, which includes brief experimental and theoretical reviews as well as original results, summarizes the activities of the "New Physics" working group for the "Physics at TeV Colliders" workshop (Les Houches, France, 8-26 June, 2009).Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory
ArXiv 1004.319 (2010)
Abstract:
The Pierre Auger (cosmic ray) Observatory provides a laboratory for studying fundamental physics at energies far beyond those available at colliders. The Observatory is sensitive not only to hadrons and photons, but can in principle detect ultrahigh energy neutrinos in the cosmic radiation. Interestingly, it may be possible to uncover new physics by analyzing characteristics of the neutrino flux at the Earth. By comparing the rate for quasi-horizontal, deeply penetrating air showers triggered by all types of neutrinos, with the rate for slightly upgoing showers generated by Earth-skimming tau neutrinos, we determine the ratio of events which would need to be detected in order to signal the existence of new non-perturbative interactions beyond the TeV-scale in which the final state energy is dominated by the hadronic component. We use detailed Monte Carlo simulations to calculate the effects of interactions in the Earth and in the atmosphere. We find that observation of 1 Earth-skimming and 10 quasi-horizontal events would exclude the standard model at the 99% confidence level. If new non-perturbative physics exists, a decade or so would be required to find it in the most optimistic case of a neutrino flux at the Waxman-Bahcall level and a neutrino-nucleon cross-section an order of magnitude above the standard model prediction.Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory
(2010)
Systematic effects in the extraction of the 'WMAP haze'
ArXiv 1004.3056 (2010)