New results in cosmology
ArXiv hep-ph/0201140 (2002)
Abstract:
From an observational perspective cosmology is today in excellent shape - advances in instrumentation and data processing have enabled us to study the universe in detail back to when the first galaxies formed, map the fluctuations in the cosmic microwave background which provide a measure of the overall geometry, and reconstruct the thermal history reliably back to at least the primordial nucleosynthesis era. However recent deep studies of the Hubble expansion rate have suggested that the universe is accelerating, driven by some form of `dark' (vacuum) energy. If true, this implies a new energy scale in Nature of order 0.001 eV, well below any known scale of fundamental physics. This has refocussed attention on the notorious cosmological constant problem at the interface of general relativity and quantum field theory. It is possible that the resolution of this situation will require fundamental modifications to our ideas about gravity.Baryogenesis by brane collision
Physical Review D - Particles, Fields, Gravitation and Cosmology 66:6 (2002)
Abstract:
We present a new scenario for baryogenesis in the context of heterotic brane-world models. The baryon asymmetry of the universe is generated at a small-instanton phase transition which is initiated by a moving brane colliding with the observable boundary. We demonstrate, in the context of a simple model, that reasonable values for the baryon asymmetry can be obtained. As a byproduct we find a new class of moving-brane cosmological solutions in the presence of a perfect fluid. © 2002 The American Physical Society.Effects of nonperturbatively improved dynamical fermions in QCD at fixed lattice spacing
Physical Review D 65:5 (2002)