A stratospheric prognostic ozone for seamless Earth System Models: performance, impacts and future

Atmospheric Chemistry and Physics European Geosciences Union 22:7 (2022) 4277-4302

Authors:

Beatriz Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley Gray, Robin Hogan, Luke Jones, Linus Magnusson, Inna Politchtchouk, Theodore Shepherd, Nils Wedi, Antje Weisheimer

Abstract:

We have implemented a new stratospheric ozone model in the European Centre for Medium-Range Weather Forecasts (ECMWF) system and tested its performance for different timescales to assess the impact of stratospheric ozone on meteorological fields. We have used the new ozone model to provide prognostic ozone in medium-range and long-range (seasonal) experiments, showing the feasibility of this ozone scheme for a seamless numerical weather prediction (NWP) modelling approach. We find that the stratospheric ozone distribution provided by the new scheme in ECMWF forecast experiments is in very good agreement with observations, even for unusual meteorological conditions such as Arctic stratospheric sudden warmings (SSWs) and Antarctic polar vortex events like the vortex split of year 2002. To assess the impact it has on meteorological variables, we have performed experiments in which the prognostic ozone is interactive with radiation. The new scheme provides a realistic ozone field able to improve the description of the stratosphere in the ECMWF system, as we find clear reductions of biases in the stratospheric forecast temperature. The seasonality of the Southern Hemisphere polar vortex is also significantly improved when using the new ozone model. In medium-range simulations we also find improvements in high-latitude tropospheric winds during the SSW event considered in this study. In long-range simulations, the use of the new ozone model leads to an increase in the correlation of the winter North Atlantic Oscillation (NAO) index with respect to ERA-Interim and an increase in the signal-to-noise ratio over the North Atlantic sector. In our study we show that by improving the description of the stratospheric ozone in the ECMWF system, the stratosphere–troposphere coupling improves. This highlights the potential benefits of this new ozone model to exploit stratospheric sources of predictability and improve weather predictions over Europe on a range of timescales.

Last Glacial Maximum atmospheric lapse rates: a model-data study on the American Cordillera case

Copernicus Publications (2022)

Authors:

Masa Kageyama, Pierre-Henri Blard, Stella Bourdin, Julien Charreau, Lukas Kluft, Guillaume Leduc, Etienne Legrain

Stratospheric prognostic ozone for seamless Earth System Models

Copernicus Publications (2022)

Authors:

Beatriz Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley Gray, Robin Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore Shepherd, Nils Wedi, Antje Weisheimer

Temporal merging of decadal predictions and climate projections to obtain seamless information: challenges and potential solutions

Copernicus Publications (2022)

Authors:

Daniel J Befort, Lukas Brunner, Leonard F Borchert, Christopher H O'Reilly, Antje Weisheimer

Testing methods to constrain future European climate projections in an “out-of-sample” framework

Copernicus Publications (2022)

Authors:

Christopher O'Reilly, Ben Booth, Lukas Brunner, Said Qasmi, Rita Nogherotto, Andrew Ballinger, Dan Befort, Antje Weisheimer