Bell's theorem, non-computability and conformal cyclic cosmology: A top-down approach to quantum gravity

AVS Quantum Science American Vacuum Society 3:4 (2021) 040801

Detection of interannual ensemble forecast signals over the North Atlantic and Europe using atmospheric circulation regimes

Quarterly Journal of the Royal Meteorological Society Wiley 148:742 (2021) 434-453

Authors:

Swinda Falkena, Jana de Wiljes, Antje Weisheimer, Theodore Shepherd

Abstract:

To study the forced variability of atmospheric circulation regimes, the use of model ensembles is often necessary for identifying statistically significant signals as the observed data constitute a small sample and are thus strongly affected by the noise associated with sampling uncertainty. However, the regime representation is itself affected by noise within the atmosphere, which can make it difficult to detect robust signals. To this end we employ a regularised k-means clustering algorithm to better identify the signal in a model ensemble. The approach allows for the identification of six regimes for the wintertime Euro-Atlantic sector and leads to more pronounced regime dynamics, compared to results without regularisation, both overall and on sub-seasonal and interannual timescales. We find that sub-seasonal variability in the regime occurrence rates is mainly explained by changes in the seasonal cycle of the mean climatology. On interannual timescales relations between the occurrence rates of the regimes and the El Ni˜no Southern Oscillation (ENSO) are identified. The use of six regimes captures a more detailed response of the circulation to ENSO compared to the common use of four regimes. Predictable signals in occurrence rate on interannual timescales are found for the two zonal flow regimes, namely a regime consisting of a negative geopotential height anomaly over the Norwegian Sea and Scandinavia, and the positive phase of the NAO. The signal strength for these regimes is comparable between observations and model, in contrast to that of the NAO-index where the signal strength in the observations is underestimated by a factor of two in the model. Our regime analysis suggests that this signal-to-noise problem for the NAO-index is primarily related to those atmospheric flow patterns associated with the negative NAO-index as we find poor predictability for the corresponding NAO− regime.

Forecast-based attribution of a winter heatwave within the limit of predictability

Proceedings of the National Academy of Sciences National Academy of Sciences 118:49 (2021) e2112087118

Authors:

Nicholas Leach, Antje Weisheimer, Myles Allen, Tim Palmer

Abstract:

The question of how humans have influenced individual extreme weather events is both scientifically and socially important. However, deficiencies in climate models’ representations of key mechanisms within the process chains that drive weather reduce our confidence in estimates of the human influence on extreme events. We propose that using forecast models that successfully predicted the event in question could increase the robustness of such estimates. Using a successful forecast means we can be confident that the model is able to faithfully represent the characteristics of the specific extreme event. We use this forecast-based methodology to estimate the direct radiative impact of increased CO2 concentrations (one component, but not the entirety, of human influence) on the European heatwave of February 2019.

Compressing atmospheric data into its real information content.

Nature computational science 1:11 (2021) 713-724

Authors:

Milan Klöwer, Miha Razinger, Juan J Dominguez, Peter D Düben, Tim N Palmer

Abstract:

Hundreds of petabytes are produced annually at weather and climate forecast centers worldwide. Compression is essential to reduce storage and to facilitate data sharing. Current techniques do not distinguish the real from the false information in data, leaving the level of meaningful precision unassessed. Here we define the bitwise real information content from information theory for the Copernicus Atmospheric Monitoring Service (CAMS). Most variables contain fewer than 7 bits of real information per value and are highly compressible due to spatio-temporal correlation. Rounding bits without real information to zero facilitates lossless compression algorithms and encodes the uncertainty within the data itself. All CAMS data are 17× compressed relative to 64-bit floats, while preserving 99% of real information. Combined with four-dimensional compression, factors beyond 60× are achieved. A data compression Turing test is proposed to optimize compressibility while minimizing information loss for the end use of weather and climate forecast data.

More accuracy with less precision

Quarterly Journal of the Royal Meteorological Society Wiley 147:741 (2021) 4358-4370

Authors:

Simon TK Lang, Andrew Dawson, Michail Diamantakis, Peter Dueben, Samuel Hatfield, Martin Leutbecher, Tim Palmer, Fernando Prates, Christopher D Roberts, Irina Sandu, Nils Wedi