Resurgence of superconductivity and the role of $d_{xy}$ hole band in FeSe$_{1-x}$Te$_x$
(2024)
Enhancing conductivity of silver nanowire networks through surface engineering using bidentate rigid ligands
ACS Applied Materials and Interfaces American Chemical Society 16:3 (2024) 4150-4159
Abstract:
Solution processable metallic nanomaterials present a convenient way to fabricate conductive structures, which are necessary in all electronic devices. However, they tend to require post-treatments to remove the bulky ligands around them to achieve high conductivity. In this work, we present a method to formulate a post-treatment free conductive silver nanowire ink by controlling the type of ligands around the silver nanowires. We found that bidentate ligands with a rigid molecular structure were effective in improving the conductivity of the silver nanowire networks as they could maximize the number of linkages between neighboring nanowires. In addition, DFT calculations also revealed that ligands with good LUMO to silver energy alignment were more effective. Because of these reasons, fumaric acid was found to be the most effective ligand and achieved a large reduction in sheet resistance of 70% or higher depending on the nanowire network density. The concepts elucidated from this study would also be applicable to other solution processable nanomaterials systems such as quantum dots for photovoltaics or LEDs which also require good charge transport being neighboring nanoparticles.Collapse of Metallicity and High-Tc Superconductivity in the High-Pressure phase of FeSe0.89S0.11
University of Oxford (2024)
Abstract:
This dataset was created by performing temperature dependendent resistivity and tunnel diode oscillator studies of different single crystals of FeSe0.89S0.11. The experiment were performed using diamond anvil cells and low temperature cryostats both in Oxford and at the HMFL in Nijmegen. The data are related to the manuscript with the same title: Collapse of Metallicity and High-Tc Superconductivity in the High-Pressure phase of FeSe0.89S0.11 (https://arxiv.org/abs/2212.06824) to appear in npj Quantum Materials.Dataset- Anisotropic magnetic interactions in a candidate Kitaev spin liquid close to a metal-insulator transition
University of Oxford (2024)
Abstract:
This data set accompanies the publication entitled "Anisotropic magnetic interactions in a candidate Kitaev spin liquid close to a metal-insulator transition" posted on the archive (https://arxiv.org/abs/2407.15657) and also to appear in Communication Physics. These data were generated by firstly performing X-ray diffraction on single crystals of RuI3. The torque experiments were performed using piezocantilevers and a single axis rotator in a 16T PPMS cryostat at different temperatures. The detailed measurements were performed for three different plans of rotations. The data were analyzed using Fourier decomposition of the contribution to the torque signal as well as direct fitting using an empirical expression described in the text. The experimental data are compared with theoretical simulation using parameters described in the text.Unveiling the quasiparticle behaviour in the pressure-induced high-Tc phase of an iron-chalcogenide superconductor
University of Oxford (2024)