Collapse of metallicity and high- T c superconductivity in the high-pressure phase of FeSe 0.89 S 0.11

npj Quantum Materials Nature Research 9:1 (2024) 73

Authors:

Pascal Reiss, Alix McCollam, Zachary Zajicek, Amir A Haghighirad, Amalia I Coldea

Abstract:

We investigate the high-pressure phase of the iron-based superconductor FeSe0.89S0.11 using transport and tunnel diode oscillator studies using diamond anvil cells. We construct detailed pressure-temperature phase diagrams that indicate that the superconducting critical temperature is strongly enhanced by more than a factor of four towards 40 K above 4 GPa. The resistivity data reveal signatures of a fan-like structure of non-Fermi liquid behaviour which could indicate the existence of a putative quantum critical point buried underneath the superconducting dome around 4.3 GPa. With further increasing the pressure, the zero-field electrical resistivity develops a non-metallic temperature dependence and the superconducting transition broadens significantly. Eventually, the system fails to reach a fully zero-resistance state, and the finite resistance at low temperatures becomes strongly current-dependent. Our results suggest that the high-pressure, high-Tc phase of iron chalcogenides is very fragile and sensitive to uniaxial effects of the pressure medium, cell design and sample thickness. This high-pressure region could be understood assuming a real-space phase separation caused by nearly concomitant electronic and structural instabilities.

Anisotropic magnetic interactions in a candidate Kitaev spin liquid close to a metal-insulator transition

(2024)

Authors:

Zeyu Ma, Danrui Ni, David AS Kaib, Kylie MacFarquharson, John S Pearce, Robert J Cava, Roser Valenti, Radu Coldea, Amalia I Coldea

Anisotropy of the zigzag order in the Kitaev honeycomb magnet $\alpha$-RuBr$_3$

(2024)

Authors:

John S Pearce, David AS Kaib, Zeyu Ma, Danrui Ni, RJ Cava, Roser Valenti, Radu Coldea, Amalia I Coldea

Unveiling the quasiparticle behaviour in the pressure-induced high-$T_c$ phase of an iron-chalcogenide superconductor

(2024)

Authors:

Z Zajicek, P Reiss, D Graf, JCA Prentice, Y Sadki, AA Haghighirad, AI Coldea

Unveiling the quasiparticle behaviour in the pressure-induced high-Tc phase of an iron-chalcogenide superconductor

npj Quantum Materials Springer Nature 9:1 (2024) 52

Authors:

Zachary Zajicek, Pascal Reiss, David Graf, Joseph Prentice, Ylias Sadki, Amir Haghighirad, Amalia Coldea

Abstract:

Superconductivity of iron chalocogenides is strongly enhanced under applied pressure yet its underlying pairing mechanism remains elusive. Here, we present a quantum oscillations study up to 45 T in the high-Tc phase of tetragonal FeSe0.82S0.18 up to 22 kbar. Under applied pressure, the quasi-two-dimensional multi-band Fermi surface expands and the effective masses remain large, whereas the superconductivity displays a threefold enhancement. Comparing with chemical pressure tuning of FeSe1−xSx, the Fermi surface expands in a similar manner but the effective masses and Tc are suppressed. These differences may be attributed to the changes in the density of states influenced by the chalcogen height, which could promote stronger spin fluctuations pairing under pressure. Furthermore, our study also reveals unusual scattering and broadening of superconducting transitions in the high-pressure phase, indicating the presence of a complex pairing mechanism.