Plasma-Based Modification of Tin Halide Perovskite Interfaces for Photovoltaic Applications

ACS Applied Materials & Interfaces American Chemical Society (ACS) 16:37 (2024) 49392-49399

Authors:

Sara Covella, Vincenza Armenise, Muhammad Okash Ur Rehman, Ece Aktas, Francesco Fracassi, Fabio Palumbo, Silvia Colella, Antonio Abate, Andrea Listorti

The promise and challenges of inverted perovskite solar cells

Chemical Reviews American Chemical Society 124:19 (2024) 10623-10700

Authors:

Peng Chen, Yun Xiao, Shunde Li, Xiaohan Jia, Deying Luo, Wei Zhang, Henry J Snaith, Qihuang Gong, Rui Zhu

Abstract:

Recently, there has been an extensive focus on inverted perovskite solar cells (PSCs) with a p-i-n architecture due to their attractive advantages, such as exceptional stability, high efficiency, low cost, low-temperature processing, and compatibility with tandem architectures, leading to a surge in their development. Single-junction and perovskite-silicon tandem solar cells (TSCs) with an inverted architecture have achieved certified PCEs of 26.15% and 33.9% respectively, showing great promise for commercial applications. To expedite real-world applications, it is crucial to investigate the key challenges for further performance enhancement. We first introduce representative methods, such as composition engineering, additive engineering, solvent engineering, processing engineering, innovation of charge transporting layers, and interface engineering, for fabricating high-efficiency and stable inverted PSCs. We then delve into the reasons behind the excellent stability of inverted PSCs. Subsequently, we review recent advances in TSCs with inverted PSCs, including perovskite-Si TSCs, all-perovskite TSCs, and perovskite-organic TSCs. To achieve final commercial deployment, we present efforts related to scaling up, harvesting indoor light, economic assessment, and reducing environmental impacts. Lastly, we discuss the potential and challenges of inverted PSCs in the future.

First-Principles Approach to Finite Element Simulation of Flexible Photovoltaics

Energies MDPI 17:16 (2024) 4064

Authors:

Francis Ako Marley, Joseph Asare, Daniel Sekyi-Arthur, Tino Lukas, Augustine Nana Sekyi Appiah, Dennis Charway, Benjamin Agyei-Tuffour, Richard Boadi, Patryk Janasik, Samuel Yeboah, G Gebreyesus, George Nkrumah-Buandoh, Marcin Adamiak, Henry James Snaith

Abstract:

This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in the valence band of NiO, leading to enhanced charge transport. Notably, Cu:NiO exhibits a direct band gap (reduced from 3.04 eV in NiO to 1.65 eV in the stable supercell structure), facilitating the efficient hole transfer from the active layer. Furthermore, the Fermi level shifts towards the valence band in Cu:NiO, promoting hole mobility. This translates to an improved photovoltaic performance, with Cu:NiO-based HTLs achieving ~18% and ~9% power conversion efficiencies (PCEs) in perovskite and poly 3-hexylthiophene: 1-3-methoxycarbonyl propyl-1-phenyl 6,6 C 61 butyric acid methyl ester (P3HT:PCBM) polymer solar cells, respectively. Finally, a finite element analysis demonstrates the potential of these composite HTLs with Poly 3,4-ethylene dioxythiophene)—polystyrene sulfonate (PEDOT:PSS) in flexible electronics design and the optimization of printing processes. Overall, this work highlights Cu:NiO as a promising candidate for high-performance and flexible organic–inorganic photovoltaic cells.

Coupling Photogeneration with Thermodynamic Modeling of Light-Induced Alloy Segregation Enables the Identification of Stabilizing Dopants

Chemistry of Materials American Chemical Society (ACS) 36:15 (2024) 7438-7450

Authors:

Tong Zhu, Luke Grater, Sam Teale, Eugenia S Vasileiadou, Jonathan Sharir-Smith, Bin Chen, Mercouri G Kanatzidis, Edward H Sargent

Improved reverse bias stability in p–i–n perovskite solar cells with optimized hole transport materials and less reactive electrodes

Nature Energy Nature Research 9:10 (2024) 1275-1284

Authors:

Fangyuan Jiang, Yangwei Shi, Tanka R Rana, Daniel Morales, Isaac E Gould, Declan P McCarthy, Joel A Smith, M Greyson Christoforo, Muammer Y Yaman, Faiz Mandani, Tanguy Terlier, Hannah Contreras, Stephen Barlow, Aditya D Mohite, Henry J Snaith, Seth R Marder, J Devin MacKenzie, Michael D McGehee, David S Ginger

Abstract:

As perovskite photovoltaics stride towards commercialization, reverse bias degradation in shaded cells that must current match illuminated cells is a serious challenge. Previous research has emphasized the role of iodide and silver oxidation, and the role of hole tunnelling from the electron-transport layer into the perovskite to enable the flow of current under reverse bias in causing degradation. Here we show that device architecture engineering has a significant impact on the reverse bias behaviour of perovskite solar cells. By implementing both a ~35-nm-thick conjugated polymer hole transport layer and a more electrochemically stable back electrode, we demonstrate average breakdown voltages exceeding −15 V, comparable to those of silicon cells. Our strategy for increasing the breakdown voltage reduces the number of bypass diodes needed to protect a solar module that is partially shaded, which has been proven to be an effective strategy for silicon solar panels.