Molecular cation and low-dimensional perovskite surface passivation in perovskite solar cells

Nature Energy Springer Nature 9:7 (2024) 779-792

Authors:

Sam Teale, Matteo Degani, Bin Chen, Edward H Sargent, Giulia Grancini

Abstract:

The deposition of large ammonium cations onto perovskite surfaces to passivate defects and reduce contact recombination has enabled exceptional efficiency and stability in perovskite solar cells. These ammonium cations can either assemble as a thin molecular layer at the perovskite surface or induce the formation of a low-dimensional (usually two-dimensional) perovskite capping layer on top of the three-dimensional perovskite. The formation of these two different structures is often overlooked by researchers, although they impact differently on device operation. In this Review, we seek to distinguish between these two passivation layers. We consider the conditions needed for the formation of low-dimensional perovskite and the electronic properties of the two structures. We discuss the mechanisms by which each method improves photovoltaic efficiency and stability. Finally, we summarize the knowledge gaps that need to be addressed to better understand and optimize ammonium cation-based passivation strategies.

Quantum‐Defect‐Minimized, Three‐Photon‐Pumped Ultralow‐Threshold Perovskite Excitonic Lasing

Advanced Functional Materials Wiley 34:30 (2024)

Authors:

Jianhui Sun, Zhedong Zhang, Yongyi Chen, Meng Qiu, Wei Jin, Cun‐Zheng Ning, Henry J Snaith, Alex K‐Y Jen, Dangyuan Lei

Buried interface molecular hybrid for inverted perovskite solar cells

Nature Springer Nature (2024)

Authors:

Sanwan Liu, Jingbai Li, Wenshan Xiao, Rui Chen, Zhenxing Sun, Yong Zhang, Xia Lei, Shuaifeng Hu, Manuel Kober-Czerny, Jianan Wang, Fumeng Ren, Qisen Zhou, Hasan Raza, You Gao, Yitong Ji, Sibo Li, Huan Li, Longbin Qiu, Wenchao Huang, Yan Zhao, Baomin Xu, Zonghao Liu, Henry J Snaith, Nam-Gyu Park, Wei Chen

Abstract:

Perovskite solar cells (PSCs) with an "inverted" architecture are a key pathway for commercializing this emerging photovoltaic technology due to the better power conversion efficiency (PCE) and operational stability as compared to the "normal" device structure. Specifically, PCEs of the inverted PSCs have exceeded 25% owing to the development of improved self-assembled molecules (SAMs)1-5 and passivation strategies6-8. Nevertheless, poor wettability and agglomerations of SAMs9-12 will cause interfacial losses, impeding further improvement in PCE and stability. Herein, we report on molecular hybrid at the buried interface in inverted PSCs by co-assembling a multiple carboxylic acid functionalized aromatic compound of 4,4',4''-nitrilotribenzoicacid (NA) with a popular SAM of [4-(3,6-dime-thyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted PSCs demonstrated a record-certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving the highest certified PCE for inverted mini-modules at 22.74% (aperture area: 11.1 cm2). Our device also maintained 96.1% of its initial PCE after more than 2,400 hours of 1-sun operation in ambient air.

Water- and heat-activated dynamic passivation for perovskite photovoltaics

Nature Springer Nature 632:8024 (2024) 294-300

Authors:

Wei-Ting Wang, Philippe Holzhey, Ning Zhou, Qiang Zhang, Suer Zhou, Elisabeth Duijnstee, Kevin J Rietwyk, Jeng-Yu Lin, Yijie Mu, Yanfeng Zhang, Udo Bach, Chun-Guey Wu, Hin-Lap Yip, Henry J Snaith, Shien-Ping Feng

Abstract:

Further improvements in perovskite solar cells require better control of ionic defects in the perovskite photoactive layer during the manufacturing stage and their usage. Here we report a living passivation strategy using a hindered urea/thiocarbamate bond Lewis acid–base material (HUBLA), where dynamic covalent bonds with water and heat-activated characteristics can dynamically heal the perovskite to ensure device performance and stability. Upon exposure to moisture or heat, HUBLA generates new agents and further passivates defects in the perovskite. This passivation strategy achieved high-performance devices with a power conversion efficiency (PCE) of 25.1 per cent. HUBLA devices retained 94 per cent of their initial PCE for approximately 1,500 hours of ageing at 85 degrees Celsius in nitrogen and maintained 88 per cent of their initial PCE after 1,000 hours of ageing at 85 degrees Celsius and 30 per cent relative humidity in air.

Interpreting Halide Perovskite Semiconductor Photoluminescence Kinetics

ACS Energy Letters American Chemical Society (ACS) 9:6 (2024) 2508-2516

Authors:

Margherita Taddei, Sarthak Jariwala, Robert JE Westbrook, Shaun Gallagher, Aaron C Weaver, Justin Pothoof, Mark E Ziffer, Henry J Snaith, David S Ginger