Anchoring charge selective self-assembled monolayers for tin-lead perovskite solar cells
Advanced Materials Wiley 36:18 (2024) 2312264
Abstract:
Self-assembled monolayers (SAMs) have displayed great potential for improving efficiency and stability in p-i-n perovskite solar cells (PSCs). The anchoring of SAMs at the conductiv metal oxide substrates and their interaction with perovskite materials must be rationally tailored to ensure efficient charge carrier extraction and improved quality of the perovskite films. Herein, SAMs molecules with different anchoring groups and spacers to control the interaction with perovskite in the p-i-n mixed Sn-Pb PSCs are selected. It is found that the monolayer with the carboxylate group exhibits appropriate interaction and has a more favorable orientation and arrangement than that of the phosphate group. This results in reduced nonradiative recombination and enhanced crystallinity. In addition, the short chain length leads to an improved energy level alignment of SAMs with perovskite, improving hole extraction. As a result, the narrow bandgap (≈1.25 eV) Sn-Pb PSCs show efficiencies of up to 23.1% with an open-circuit voltage of up to 0.89 V. Unencapsulated devices retain 93% of their initial efficiency after storage in N<sub>2</sub> atmosphere for over 2500 h. Overall, this work highlights the underexplored potential of SAMs for perovskite photovoltaics and provides essential findings on the influence of their structural modification.Compositional Transformation and Impurity‐Mediated Optical Transitions in Co‐Evaporated Cu2AgBiI6 Thin Films for Photovoltaic Applications
Advanced Energy Materials Wiley 14:8 (2024)
Minimizing Interfacial Recombination in 1.8 eV Triple-Halide Perovskites for 27.5% Efficient All-Perovskite Tandems.
Advanced materials (Deerfield Beach, Fla.) 36:6 (2024) e2307743
Abstract:
All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.An open-cage bis[60]fulleroid as electron transport material for tin halide perovskite solar cells
Chemical Communications Royal Society of Chemistry (RSC) (2024)
Abstract:
Multifunctional ytterbium oxide buffer for perovskite solar cells
Nature Springer Nature 625:7995 (2024) 516-522