Anchoring charge selective self-assembled monolayers for tin-lead perovskite solar cells

Advanced Materials Wiley 36:18 (2024) 2312264

Authors:

Zuhong Zhang, Rui Zhu, Ying Tang, Zhenhuang Su, Shuaifeng Hu, Xu Zhang, Junhan Zhang, Jinbo Zhao, Yunchang Xue, Xingyu Gao, Guixiang Li, Jorge Pascual, Antonio Abate, Meng Li

Abstract:

Self-assembled monolayers (SAMs) have displayed great potential for improving efficiency and stability in p-i-n perovskite solar cells (PSCs). The anchoring of SAMs at the conductiv metal oxide substrates and their interaction with perovskite materials must be rationally tailored to ensure efficient charge carrier extraction and improved quality of the perovskite films. Herein, SAMs molecules with different anchoring groups and spacers to control the interaction with perovskite in the p-i-n mixed Sn-Pb PSCs are selected. It is found that the monolayer with the carboxylate group exhibits appropriate interaction and has a more favorable orientation and arrangement than that of the phosphate group. This results in reduced nonradiative recombination and enhanced crystallinity. In addition, the short chain length leads to an improved energy level alignment of SAMs with perovskite, improving hole extraction. As a result, the narrow bandgap (≈1.25 eV) Sn-Pb PSCs show efficiencies of up to 23.1% with an open-circuit voltage of up to 0.89 V. Unencapsulated devices retain 93% of their initial efficiency after storage in N<sub>2</sub> atmosphere for over 2500 h. Overall, this work highlights the underexplored potential of SAMs for perovskite photovoltaics and provides essential findings on the influence of their structural modification.

Compositional Transformation and Impurity‐Mediated Optical Transitions in Co‐Evaporated Cu2AgBiI6 Thin Films for Photovoltaic Applications

Advanced Energy Materials Wiley 14:8 (2024)

Authors:

Benjamin WJ Putland, Marcello Righetto, Heon Jin, Markus Fischer, Alexandra J Ramadan, Karl‐Augustin Zaininger, Laura M Herz, Harry C Sansom, Henry J Snaith

Minimizing Interfacial Recombination in 1.8 eV Triple-Halide Perovskites for 27.5% Efficient All-Perovskite Tandems.

Advanced materials (Deerfield Beach, Fla.) 36:6 (2024) e2307743

Authors:

Fengjiu Yang, Philipp Tockhorn, Artem Musiienko, Felix Lang, Dorothee Menzel, Rowan Macqueen, Eike Köhnen, Ke Xu, Silvia Mariotti, Daniele Mantione, Lena Merten, Alexander Hinderhofer, Bor Li, Dan R Wargulski, Steven P Harvey, Jiahuan Zhang, Florian Scheler, Sebastian Berwig, Marcel Roß, Jarla Thiesbrummel, Amran Al-Ashouri, Kai O Brinkmann, Thomas Riedl, Frank Schreiber, Daniel Abou-Ras, Henry Snaith, Dieter Neher, Lars Korte, Martin Stolterfoht, Steve Albrecht

Abstract:

All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

An open-cage bis[60]fulleroid as electron transport material for tin halide perovskite solar cells

Chemical Communications Royal Society of Chemistry (RSC) (2024)

Authors:

Wentao Liu, Guanglin Huang, Chien-Yu Chen, Tiancheng Tan, Harata Fuyuki, Shuaifeng Hu, Tomoya Nakamura, MInh Anh Truong, Richard Murdey, Yoshifumi Hashikawa, Yasujiro Murata, Atsushi Wakamiya

Abstract:

An open-cage bis[60]fulleroid (OC) was applied as electron transport material (ETM) in tin (Sn) halide perovskite solar cells (PSCs). Due to the reduced offset between the energy levels of Sn-based...

Multifunctional ytterbium oxide buffer for perovskite solar cells

Nature Springer Nature 625:7995 (2024) 516-522

Authors:

Peng Chen, Yun Xiao, Juntao Hu, Shunde Li, Deying Luo, Rui Su, Pietro Caprioglio, Pascal Kaienburg, Xiaohan Jia, Nan Chen, Jingjing Wu, Yanping Sui, Pengyi Tang, Haoming Yan, Tianyu Huang, Maotao Yu, Qiuyang Li, Lichen Zhao, Cheng-Hung Hou, Yun-Wen You, Jing-Jong Shyue, Dengke Wang, Xiaojun Li, Qing Zhao, Qihuang Gong, Zheng-Hong Lu, Henry J Snaith, Rui Zhu

Abstract:

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices. A ‘buffer material’ between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber. Thus far, evaporable organic molecules and atomic-layer-deposited metal oxides have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability.