1-nm linewidth room temperature single-photon source from optical microcavity-embedded CsPbI3 perovskite quantum dots

(2022)

Authors:

Tristan Farrow, Amit Dhawan, Ashley Marshall, Alexander Ghorbal, Wonmin Son, Henry Snaith, Jason Smith, Robert Taylor

Operational stability, low light performance, and long-lived transients in mixed-halide perovskite solar cells with a monolayer-based hole extraction layer

(2022)

Authors:

Richard Murdey, Yasuhisa Ishikura, Yuku Matsushige, Shuaifeng Hu, Jorge Pascual, Minh Anh Truong, Tomoya Nakamura, Atsushi Wakamiya

Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells

Energy and Environmental Science Royal Society of Chemistry 15 (2021) 714-726

Authors:

Robert DJ Oliver, Pietro Caprioglio, Francisco Peña-Camargo, Leonardo Buizza, Fengshuo Zu, Alexandra J Ramadan, Silvia Motti, Suhas Mahesh, Melissa McCarthy, Jonathan H Warby, Yen-Hung Lin, Norbert Koch, Steve Albrecht, Laura M Herz, Michael B Johnston, Dieter Neher, Martin Stolterfoht, Henry Snaith

Abstract:

With power conversion efficiencies of perovskite-on-silicon and all-perovskite tandem solar cells increasing at rapid pace, wide bandgap (> 1.7 eV) metal-halide perovskites (MHPs) are becoming a major focus of academic and industrial photovoltaic research. Compared to their lower bandgap (< 1.6 eV) counterparts, these types of perovskites suffer from higher levels of non-radiative losses in both the bulk material and in device configurations, constraining their efficiencies far below their thermodynamic potential. In this work, we investigate the energy losses in methylammonium (MA) free high-Br-content widegap perovskites by using a combination of THz spectroscopy, steady-state and time-resolved photoluminescence, coupled with drift-diffusion simulations. The investigation of this system allows us to study charge-carrier recombination in these materials and devices in the absence of halide segregation due to the photostabilty of formamidinium-cesium based lead halide perovskites. We find that these perovskites are characterised by large non-radiative recombination losses in the bulk material and that the interfaces with transport layers in solar cell devices strongly limit their open-circuit voltage. In particular, we discover that the interface with the hole transport layer performs particularly poorly, in contrast to 1.6 eV bandgap MHPs which are generally limited by the interface with the electron-transport layer. To overcome these losses, we incorporate and investigate the recombination mechanisms present with perovskites treated with the ionic additive 1-butyl-1-methylpipiderinium tetrafluoroborate. We find that this additive not only improves the radiative efficiency of the bulk perovskite, but also reduces the non-radiative recombination at both the hole and electron transport layer interfaces of full photovoltaic devices. In addition to unravelling the beneficial effect of this specific treatment, we further optimise our solar cells by introducing an additional LiF interface treatment at the electron transport layer interface. Together these treatments enable MA-free 1.79 eV bandgap perovskite solar cells with open-circuit voltages of 1.22 V and power conversion efficiencies approaching 17 %, which is among the highest reported for this material system.

An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles

Nature Energy 7, 107–115 (2022)

Authors:

T Jesper Jacobsson, Adam Hultqvist, Alberto García-Fernández, Aman Anand, Amran Al-Ashouri, Anders Hagfeldt, Andrea Crovetto, Antonio Abate, Antonio Gaetano Ricciardulli, Anuja Vijayan, Ashish Kulkarni, Assaf Y Anderson, Barbara Primera Darwich, Bowen Yang, Brendan L Coles, Carlo AR Perini, Carolin Rehermann, Daniel Ramirez, David Fairen-Jimenez, Diego Di Girolamo, Donglin Jia, Elena Avila, Emilio J Juarez-Perez, Fanny Baumann, Florian Mathies, GS Anaya González, Gerrit Boschloo, Giuseppe Nasti, Gopinath Paramasivam, Guillermo Martínez-Denegri, Hampus Näsström, Hannes Michaels, Hans Köbler, Hua Wu, Iacopo Benesperi, M Ibrahim Dar, Ilknur Bayrak Pehlivan, Isaac E Gould, Jacob N Vagott, Janardan Dagar, Jeff Kettle, Jie Yang, Jinzhao Li, Joel A Smith, Jorge Pascual, Jose J Jerónimo-Rendón, Juan Felipe Montoya, Juan-Pablo Correa-Baena, Junming Qiu, Junxin Wang, Kári Sveinbjörnsson, Katrin Hirselandt, Krishanu Dey, Kyle Frohna, Lena Mathies, Luigi A Castriotta, Mahmoud H Aldamasy, Manuel Vasquez-Montoya, Marco A Ruiz-Preciado, Marion A Flatken, Mark V Khenkin, Max Grischek, Mayank Kedia, Michael Saliba, Miguel Anaya, Misha Veldhoen, Neha Arora, Oleksandra Shargaieva, Oliver Maus, Onkar S Game, Ori Yudilevich, Paul Fassl, Qisen Zhou, Rafael Betancur, Rahim Munir, Rahul Patidar, Samuel D Stranks, Shahidul Alam, Shaoni Kar, Thomas Unold, Tobias Abzieher, Tomas Edvinsson, Tudur Wyn David, Ulrich W Paetzold, Waqas Zia, Weifei Fu, Weiwei Zuo, Vincent RF Schröder, Wolfgang Tress, Xiaoliang Zhang, Yu-Hsien Chiang, Zafar Iqbal, Zhiqiang Xie, Eva Unger

Abstract:

Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.

Low-cost dopant-free carbazole enamine hole-transporting materials for thermally stable perovskite solar cells

Solar RRL Wiley 6:11 (2021) 2100984

Authors:

Suer Zhou, Maryte Daskeviciene, Matas Steponaitis, Giedre Bubniene, Vygintas Jankauskas, Kelly Schutt, Philippe Holzhey, Ashley R Marshall, Pietro Caprioglio, Grey Christoforo, James M Ball, Tadas Malinauskas, Vytautas Getautis, Henry J Snaith

Abstract:

Perovskite solar cells deliver high efficiencies, but are often made from high-cost bespoke chemicals, such as the archetypical hole-conductor, 2,2′,7,7′-tetrakis(N,N-di-p-methoxy-phenylamine)-9-9′-spirobifluorene (spiro-OMeTAD). Herein, new charge-transporting carbazole-based enamine molecules are reported. The new hole conductors do not require chemical oxidation to reach high power conversion efficiencies (PCEs) when employed in n-type-intrinsic-p-type perovskite solar cells; thus, reducing the risk of moisture degrading the perovskite layer through the hydrophilicity of oxidizing additives that are typically used with conventional hole conductors. Devices made with these new undoped carbazole-based enamines achieve comparable PCEs to those employing doped spiro-OMeTAD, and greatly enhanced stability under 85 °C thermal aging; maintaining 83% of their peak efficiency after 1000 h, compared with spiro-OMeTAD-based devices that degrade to 26% of the peak PCE within 24 h. Furthermore, the carbazole-based enamines can be synthesized without the use of organometallic catalysts and complicated purification techniques, lowering the material cost by one order of magnitude compared with spiro-OMeTAD. As a result, we calculate that the overall manufacturing costs of future photovoltaic (PV) modules are reduced, making the levelized cost of electricity competitive with silicon PV modules.