Monolithic All-Perovskite Tandem Solar Cells with Minimized Optical and Energetic Losses.
Advanced materials (Deerfield Beach, Fla.) 34:11 (2022) e2110053
Abstract:
Perovskite-based multijunction solar cells are a potentially cost-effective technology that can help surpass the efficiency limits of single-junction devices. However, both mixed-halide wide-bandgap perovskites and lead-tin narrow-bandgap perovskites suffer from non-radiative recombination due to the formation of bulk traps and interfacial recombination centers which limit the open-circuit voltage of sub-cells and consequently of the integrated tandem. Additionally, the complex optical stack in a multijunction solar cell can lead to losses stemming from parasitic absorption and reflection of incident light which aggravates the current mismatch between sub-cells, thereby limiting the short-circuit current density of the tandem. Here, an integrated all-perovskite tandem solar cell is presented that uses surface passivation strategies to reduce non-radiative recombination at the perovskite-fullerene interfaces, yielding a high open-circuit voltage. By using optically benign transparent electrode and charge-transport layers, absorption in the narrow-bandgap sub-cell is improved, leading to an improvement in current-matching between sub-cells. Collectively, these strategies allow the development of a monolithic tandem solar cell exhibiting a power-conversion efficiency of over 23%.Wide-Bandgap Perovskite Quantum Dots in Perovskite Matrix for Sky-Blue Light-Emitting Diodes.
Journal of the American Chemical Society 144:9 (2022) 4009-4016
Abstract:
The epitaxial growth of a perovskite matrix on quantum dots (QDs) has enabled the emergence of efficient red light-emitting diodes (LEDs) because it unites efficient charge transport with strong surface passivation. However, the synthesis of wide-band gap (Eg) QD-in-matrix heterostructures has so far remained elusive in the case of sky-blue LEDs. Here, we developed CsPbBr3 QD-in-perovskite matrix solids that enable high luminescent efficiency and spectral stability with an optical Eg of over 2.6 eV. We screened alloy candidates that modulate the perovskite Eg and allow heteroepitaxy, seeking to implement lattice-matched type-I band alignment. Specifically, we introduced a CsPb1-xSrxBr3 matrix, in which alloying with Sr2+ increased the Eg of the perovskite and minimized lattice mismatch. We then developed an approach to passivation that would overcome the hygroscopic nature of Sr2+. We found that bis(4-fluorophenyl)phenylphosphine oxide strongly coordinates with Sr2+ and provides steric hindrance to block H2O, a finding obtained by combining molecular dynamics simulations with experimental results. The resulting QD-in-matrix solids exhibit enhanced air- and photo-stability with efficient charge transport from the matrix to the QDs. LEDs made from this material exhibit an external quantum efficiency of 13.8% and a brightness exceeding 6000 cd m-2.Efficiency Potential and Loss Analysis of Inorganic CsPbI2Br Perovskite Solar Cells
Fundacio Scito (2022)
Mechanism of Electronic Coupling in Hybrid Transition Metal Dichalcogenide-2D Perovskite Heterostructures
Fundacio Scito (2022)
Robust excitons across the phase transition of two-dimensional hybrid perovskites
(2022)