Triple-Source Co-evaporation of lead-free Cu2AgBiI6 for Use in Tandem Solar Cells
Fundacio Scito (2022)
Finetuning Hole-Extracting Monolayers for Efficient Organic Solar Cells.
ACS applied materials & interfaces 14:14 (2022) 16497-16504
Abstract:
Interface layers used for electron transport (ETL) and hole transport (HTL) often significantly enhance the performance of organic solar cells (OSCs). Surprisingly, interface engineering for hole extraction has received little attention thus far. By finetuning the chemical structure of carbazole-based self-assembled monolayers with phosphonic acid anchoring groups, varying the length of the alkane linker (2PACz, 3PACz, and 4PACz), these HTLs were found to perform favorably in OSCs. Compared to archetypal PEDOT:PSS, the PACz monolayers exhibit higher optical transmittance and lower resistance and deliver a higher short-circuit current density and fill factor. Power conversion efficiencies of 17.4% have been obtained with PM6:BTP-eC9 as the active layer, which was distinctively higher than the 16.2% obtained with PEDOT:PSS. Of the three PACz derivatives, the new 3PACz consistently outperforms the other two monolayer HTLs in OSCs with different state-of-the-art nonfullerene acceptors. Considering its facile synthesis, convenient processing, and improved performance, we consider that 3PACz is a promising interface layer for widespread use in OSCs.Quantification of Efficiency Losses Due to Mobile Ions in Perovskite Solar Cells via Fast Hysteresis Measurements
Solar RRL Wiley 6:4 (2022)
Role of Terminal Group Position in Triphenylamine-Based Self-Assembled Hole-Selective Molecules in Perovskite Solar Cells.
ACS applied materials & interfaces 14:15 (2022) 17461-17469
Abstract:
The application of self-assembled molecules (SAMs) as a charge selective layer in perovskite solar cells has gained tremendous attention. As a result, highly efficient and stable devices have been released with stand-alone SAMs binding ITO substrates. However, further structural understanding of the effect of SAM in perovskite solar cells (PSCs) is required. Herein, three triphenylamine-based molecules with differently positioned methoxy substituents have been synthesized that can self-assemble onto the metal oxide layers that selectively extract holes. They have been effectively employed in p-i-n PSCs with a power conversion efficiency of up to 20%. We found that the perovskite deposited onto SAMs made by para- and ortho-substituted hole selective contacts provides large grain thin film formation increasing the power conversion efficiencies. Density functional theory predicts that para- and ortho-substituted position SAMs might form a well-ordered structure by improving the SAM's arrangement and in consequence enhancing its stability on the metal oxide surface. We believe this result will be a benchmark for the design of further SAMs.Utilizing nonpolar organic solvents for the deposition of metal-halide perovskite films and the realization of organic semiconductor/perovskite composite photovoltaics
ACS Energy Letters American Chemical Society 7:2022 (2022) 1246-1254