An unprecedented C 80 cage that violates the isolated pentagon rule
Inorganic Chemistry Frontiers Royal Society of Chemistry (RSC) 9:10 (2022) 2264-2270
Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells
Energy & Environmental Science Royal Society of Chemistry (RSC) 15:5 (2022) 2096-2107
Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules
Science American Association for the Advancement of Science 376:6594 (2022) 762-767
Abstract:
Challenges in fabricating all-perovskite tandem solar cells as modules rather than as single-junction configurations include growing high-quality wide-bandgap perovskites and mitigating irreversible degradation caused by halide and metal interdiffusion at the interconnecting contacts. We demonstrate efficient all-perovskite tandem solar modules using scalable fabrication techniques. By systematically tuning the cesium ratio of a methylammonium-free 1.8–electron volt mixed-halide perovskite, we improve the homogeneity of crystallization for blade-coated films over large areas. An electrically conductive conformal “diffusion barrier” is introduced between interconnecting subcells to improve the power conversion efficiency (PCE) and stability of all-perovskite tandem solar modules. Our tandem modules achieve a certified PCE of 21.7% with an aperture area of 20 square centimeters and retain 75% of their initial efficiency after 500 hours of continuous operation under simulated 1-sun illumination.Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots.
Nature communications Springer Nature 13:1 (2022) 2587
Abstract:
Semiconductor quantum dots have long been considered artificial atoms, but despite the overarching analogies in the strong energy-level quantization and the single-photon emission capability, their emission spectrum is far broader than typical atomic emission lines. Here, by using ab-initio molecular dynamics for simulating exciton-surface-phonon interactions in structurally dynamic CsPbBr<sub>3</sub> quantum dots, followed by single quantum dot optical spectroscopy, we demonstrate that emission line-broadening in these quantum dots is primarily governed by the coupling of excitons to low-energy surface phonons. Mild adjustments of the surface chemical composition allow for attaining much smaller emission linewidths of 35-65 meV (vs. initial values of 70-120 meV), which are on par with the best values known for structurally rigid, colloidal II-VI quantum dots (20-60 meV). Ultra-narrow emission at room-temperature is desired for conventional light-emitting devices and paramount for emerging quantum light sources.Solvent-free method for defect reduction and improved performance of p-i-n vapor-deposited perovskite solar cells
ACS Energy Letters American Chemical Society 7 (2022) 1903-1911