Interplay of structure, charge-carrier localization and dynamics in copper-silver-bismuth-halide semiconductors

Advanced Functional Materials Wiley 32:6 (2021) 2108392

Authors:

Leonardo RV Buizza, Harry C Sansom, Adam D Wright, Aleksander M Ulatowski, Michael B Johnston, Laura M Herz, Henry J Snaith

Abstract:

Silver-bismuth based semiconductors represent a promising new class of materials for optoelectronic applications because of their high stability, all-inorganic composition, and advantageous optoelectronic properties. In this study, charge-carrier dynamics and transport properties are investigated across five compositions along the AgBiI4–CuI solid solution line (stoichiometry Cu4x(AgBi)1−xI4). The presence of a close-packed iodide sublattice is found to provide a good backbone for general semiconducting properties across all of these materials, whose optoelectronic properties are found to improve markedly with increasing copper content, which enhances photoluminescence intensity and charge-carrier transport. Photoluminescence and photoexcitation-energy-dependent terahertz photoconductivity measurements reveal that this enhanced charge-carrier transport derives from reduced cation disorder and improved electronic connectivity owing to the presence of Cu+. Further, increased Cu+ content enhances the band curvature around the valence band maximum, resulting in lower charge-carrier effective masses, reduced exciton binding energies, and higher mobilities. Finally, ultrafast charge-carrier localization is observed upon pulsed photoexcitation across all compositions investigated, lowering the charge-carrier mobility and leading to Langevin-like bimolecular recombination. This process is concluded to be intrinsically linked to the presence of silver and bismuth, and strategies to tailor or mitigate the effect are proposed and discussed.

Enhanced visible light absorption in layered Cs3Bi2Br9 through mixed-valence Sn (ii)/Sn (iv) doping

Chemical Science 12, 14686-14699 (2021)

Authors:

Chantalle J Krajewska, Seán R Kavanagh, Lina Zhang, Dominik J Kubicki, Krishanu Dey, Krzysztof Gałkowski, Clare P Grey, Samuel D Stranks, Aron Walsh, David O Scanlon, Robert G Palgrave

Abstract:

Lead-free halides with perovskite-related structures, such as the vacancy-ordered perovskite Cs3Bi2Br9, are of interest for photovoltaic and optoelectronic applications. We find that addition of SnBr2 to the solution-phase synthesis of Cs3Bi2Br9 leads to substitution of up to 7% of the Bi(III) ions by equal quantities of Sn(II) and Sn(IV). The nature of the substitutional defects was studied by X-ray diffraction, 133Cs and 119Sn solid state NMR, X-ray photoelectron spectroscopy and density functional theory calculations. The resulting mixed-valence compounds show intense visible and near infrared absorption due to intervalence charge transfer, as well as electronic transitions to and from localised Sn-based states within the band gap. Sn(II) and Sn(IV) defects preferentially occupy neighbouring B-cation sites, forming a double-substitution complex. Unusually for a Sn(II) compound, the material shows minimal changes in optical and structural properties after 12 months storage in air. Our calculations suggest the stabilisation of Sn(II) within the double substitution complex contributes to this unusual stability. These results expand upon research on inorganic mixed-valent halides to a new, layered structure, and offer insights into the tuning, doping mechanisms, and structure–property relationships of lead-free vacancy-ordered perovskite structures.

Pyrene‐Based Small‐Molecular Hole Transport Layers for Efficient and Stable Narrow‐Bandgap Perovskite Solar Cells

Solar RRL Wiley 5:10 (2021)

Authors:

Paula Gómez, Junke Wang, Miriam Más-Montoya, Delia Bautista, Christ HL Weijtens, David Curiel, René AJ Janssen

Mixed lead-tin perovskite films with >7 μs charge carrier lifetimes realized by maltol post-treatment

Chemical Science Royal Society of Chemistry 12:40 (2021) 13513-13519

Authors:

Shuaifeng Hu, Minh Anh Truong, Kento Otsuka, Taketo Handa, Takumi Yamada, Ryosuke Nishikubo, Yasuko Iwasaki, Akinori Saeki, Richard Murdey, Yoshihiko Kanemitsu, Atsushi Wakamiya

Abstract:

Mixed lead–tin (Pb–Sn) halide perovskites with optimum band gaps near 1.3 eV are promising candidates for next-generation solar cells. However, the performance of solar cells fabricated with Pb–Sn perovskites is restricted by the facile oxidation of Sn(II) to Sn(IV), which induces self-doping. Maltol, a naturally occurring flavor enhancer and strong metal binding agent, was found to effectively suppress Sn(IV) formation and passivate defects in mixed Pb–Sn perovskite films. When used in combination with Sn(IV) scavenging, the maltol surface treatment led to high-quality perovskite films which showed enhanced photoluminescence intensities and charge carrier lifetimes in excess of 7 μs. The scavenging and surface treatments resulted in highly reproducible solar cell devices, with photoconversion efficiencies of up to 21.4% under AM1.5G illumination.

Band engineering of nickel oxide interfaces and connection between absolute valence energy alignment and surface dipoles in halide perovskite heterostructures

Fundacio Scito (2021)

Authors:

Boubacar Traore, Jacky Even, Laurent Pedesseau, Alexandra Ramadan, Jean-Christophe Blancon, Pooja Basera, Aditya Mohite, Henry Snaith, Mikael Kepenekian, Claudine Katan, Sergei Tretiak