An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
Nature Energy 7, 107–115 (2022)
Abstract:
Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.
Low-cost dopant-free carbazole enamine hole-transporting materials for thermally stable perovskite solar cells
Solar RRL Wiley 6:11 (2021) 2100984
Abstract:
Perovskite solar cells deliver high efficiencies, but are often made from high-cost bespoke chemicals, such as the archetypical hole-conductor, 2,2′,7,7′-tetrakis(N,N-di-p-methoxy-phenylamine)-9-9′-spirobifluorene (spiro-OMeTAD). Herein, new charge-transporting carbazole-based enamine molecules are reported. The new hole conductors do not require chemical oxidation to reach high power conversion efficiencies (PCEs) when employed in n-type-intrinsic-p-type perovskite solar cells; thus, reducing the risk of moisture degrading the perovskite layer through the hydrophilicity of oxidizing additives that are typically used with conventional hole conductors. Devices made with these new undoped carbazole-based enamines achieve comparable PCEs to those employing doped spiro-OMeTAD, and greatly enhanced stability under 85 °C thermal aging; maintaining 83% of their peak efficiency after 1000 h, compared with spiro-OMeTAD-based devices that degrade to 26% of the peak PCE within 24 h. Furthermore, the carbazole-based enamines can be synthesized without the use of organometallic catalysts and complicated purification techniques, lowering the material cost by one order of magnitude compared with spiro-OMeTAD. As a result, we calculate that the overall manufacturing costs of future photovoltaic (PV) modules are reduced, making the levelized cost of electricity competitive with silicon PV modules.In situ cadmium surface passivation of perovskite nanocrystals for blue LEDs
Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 9:47 (2021) 26750-26757
Device Performance of Emerging Photovoltaic Materials (Version 2)
Advanced Energy Materials Wiley 11:48 (2021)
Er@C82 as a Bifunctional Additive to the Spiro‐OMeTAD Hole Transport Layer for Improving Performance and Stability of Perovskite Solar Cells
Solar RRL Wiley 5:12 (2021)