The impact of phase segregation in mixed halide perovskites: a matter of charge recombination rather than transport

Fundacio Scito (2021)

Authors:

Silvia Motti, Jay Patel, Robert Oliver, Henry Snaith, Michael Johnston, Laura Herz

Understanding the crystallographic and microstructural properties of hybrid perovskite thin films through electron microscopy

Fundacio Scito (2021)

Authors:

Mathias Uller Rothmann, Laura Herz, Juliane Borchert, Kilian Lohmann, Colum M. O'Leary, Judy Kim, Laura Clark, Henry Snaith, Michael Johnston, Peter Nellist, Alex Sheader

Adduct-based p-doping of organic semiconductors

Nature Materials Nature Research 20 (2021) 1248-1254

Authors:

Nobuya Sakai, Ross Warren, Fengyu Zhang, Simantini Nayak, Junliang Liu, Sameer V Kesava, Yen-Hung Lin, Himansu S Biswal, Xin Lin, Chris Grovenor, Tadas Malinauskas, Aniruddha Basu, Thomas D Anthopoulos, Vytautas Getautis, Antoine Kahn, Moritz Riede, Pabitra K Nayak, Henry J Snaith

Abstract:

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.

Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: application in stable p–i–n perovskite solar cells

Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 9:14 (2021) 9347-9353

Authors:

Marie-Hélène Tremblay, Kelly Schutt, Federico Pulvirenti, Thorsten Schultz, Berthold Wegner, Xiaojia Jia, Yadong Zhang, Elena Longhi, Raghunath R Dasari, Canek Fuentes-Hernandez, Bernard Kippelen, Norbert Koch, Henry J Snaith, Stephen Barlow, Seth R Marder

Charge-carrier mobility and localization in semiconducting CU2AGBiI6 for photovoltaic applications

ACS Energy Letters American Chemical Society 6:5 (2021) 1729-1739

Authors:

Leonardo RV Buizza, Adam D Wright, Giulia Longo, Harry C Sansom, Chelsea Q Xia, Matthew J Rosseinsky, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

Lead-free silver–bismuth semiconductors have become increasingly popular materials for optoelectronic applications, building upon the success of lead halide perovskites. In these materials, charge-lattice couplings fundamentally determine charge transport, critically affecting device performance. In this study, we investigate the optoelectronic properties of the recently discovered lead-free semiconductor Cu2AgBiI6 using temperature-dependent photoluminescence, absorption, and optical-pump terahertz-probe spectroscopy. We report ultrafast charge-carrier localization effects, evident from sharp THz photoconductivity decays occurring within a few picoseconds after excitation and a rise in intensity with decreasing temperature of long-lived, highly Stokes-shifted photoluminescence. We conclude that charge carriers in Cu2AgBiI6 are subject to strong charge-lattice coupling. However, such small polarons still exhibit mobilities in excess of 1 cm2 V–1 s–1 at room temperature because of low energetic barriers to formation and transport. Together with a low exciton binding energy of ∼29 meV and a direct band gap near 2.1 eV, these findings highlight Cu2AgBiI6 as an attractive lead-free material for photovoltaic applications.