Crystallographic, optical, and electronic properties of the Cs2AgBi1-xInxBr6 double perovskite: understanding the fundamental photovoltaic efficiency challenges

ACS Energy Letters American Chemical Society 6:3 (2021) 1073-1081

Authors:

Laura Schade, Suhas Mahesh, George Volonakis, Marios Zacharias, Bernard Wenger, Felix Schmidt, Sameer Vajjala Kesava, Dharmalingam Prabhakaran, Mojtaba Abdi-Jalebi, Markus Lenz, Feliciano Giustino, Giulia Longo, Paolo Radaelli, Henry Snaith

Abstract:

We present a crystallographic and optoelectronic study of the double perovskite Cs2AgBi1–xInxBr6. From structural characterization we determine that the indium cation shrinks the lattice and shifts the cubic-to-tetragonal phase transition point to lower temperatures. The absorption onset is shifted to shorter wavelengths upon increasing the indium content, leading to wider band gaps, which we rationalize through first-principles band structure calculations. Despite the unfavorable band gap shift, we observe an enhancement in the steady-state photoluminescence intensity, and n-i-p photovoltaic devices present short-circuit current greater than that of neat Cs2AgBiBr6 devices. In order to evaluate the prospects of this material as a solar absorber, we combine accurate absorption measurements with thermodynamic modeling and identify the fundamental limitations of this system. Provided radiative efficiency can be increased and the choice of charge extraction layers are specifically improved, this material could prove to be a useful wide band gap solar absorber.

Halide segregation in mixed-halide perovskites: influence of A-site cations

ACS Energy Letters American Chemical Society 6:2 (2021) 799-808

Authors:

Alexander Knight, Anna Juliane Borchert, Robert DJ Oliver, Jay Patel, Paolo G Radaelli, Henry Snaith, Michael B Johnston, Laura M Herz

Abstract:

Mixed-halide perovskites offer bandgap tunability essential for multijunction solar cells; however, a detrimental halide segregation under light is often observed. Here we combine simultaneous in situ photoluminescence and X-ray diffraction measurements to demonstrate clear differences in compositional and optoelectronic changes associated with halide segregation in MAPb(Br0.5I0.5)3 and FA0.83Cs0.17Pb(Br0.4I0.6)3 films. We report evidence for low-barrier ionic pathways in MAPb(Br0.5I0.5)3, which allow for the rearrangement of halide ions in localized volumes of perovskite without significant compositional changes to the bulk material. In contrast, FA0.83Cs0.17Pb(Br0.4I0.6)3 lacks such low-barrier ionic pathways and is, consequently, more stable against halide segregation. However, under prolonged illumination, it exhibits a considerable ionic rearrangement throughout the bulk material, which may be triggered by an initial demixing of A-site cations, altering the composition of the bulk perovskite and reducing its stability against halide segregation. Our work elucidates links between composition, ionic pathways, and halide segregation, and it facilitates the future engineering of phase-stable mixed-halide perovskites.

Tunable transition metal complexes as hole transport materials for stable perovskite solar cells.

Chemical communications (Cambridge, England) 57:16 (2021) 2093-2096

Authors:

Liangyou Lin, Camilla Lian, Timothy W Jones, Robert D Bennett, Blago Mihaylov, Terry Chien-Jen Yang, Jacob Tse-Wei Wang, Bo Chi, Noel W Duffy, Jinhua Li, Xianbao Wang, Henry J Snaith, Gregory J Wilson

Abstract:

Transition metal complexes offer cost-effective alternatives as hole-transport materials (HTMs) in perovskite solar cells. However, the devices suffer from low performance. We boost the power conversion efficiency of devices with transition metal complex HTMs from 2% to above 10% through energy level tuning. We further demonstrate the excellent photostability of the device based on the additive-free HTM.

A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells

Materials Chemistry Frontiers Royal Society of Chemistry (RSC) 5:1 (2021) 450-457

Authors:

Khaled Al Kurdi, Declan P McCarthy, David P McMeekin, Sebastian O Furer, Marie-Hélène Tremblay, Stephen Barlow, Udo Bach, Seth R Marder

Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystals

Physical Review Applied American Physical Society (APS) 15:1 (2021) 014006

Authors:

Elisabeth A Duijnstee, Vincent M Le Corre, Michael B Johnston, L Jan Anton Koster, Jongchul Lim, Henry J Snaith