Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters.

Nature communications 12:1 (2021) 644

Authors:

Yuwei Guo, Sofia Apergi, Nan Li, Mengyu Chen, Chunyang Yin, Zhongcheng Yuan, Feng Gao, Fangyan Xie, Geert Brocks, Shuxia Tao, Ni Zhao

Abstract:

Perovskite light emitting diodes suffer from poor operational stability, exhibiting a rapid decay of external quantum efficiency within minutes to hours after turn-on. To address this issue, we explore surface treatment of perovskite films with phenylalkylammonium iodide molecules of varying alkyl chain lengths. Combining experimental characterization and theoretical modelling, we show that these molecules stabilize the perovskite through suppression of iodide ion migration. The stabilization effect is enhanced with increasing chain length due to the stronger binding of the molecules with the perovskite surface, as well as the increased steric hindrance to reconfiguration for accommodating ion migration. The passivation also reduces the surface defects, resulting in a high radiance and delayed roll-off of external quantum efficiency. Using the optimized passivation molecule, phenylpropylammonium iodide, we achieve devices with an efficiency of 17.5%, a radiance of 1282.8 W sr-1 m-2 and a record T50 half-lifetime of 130 h under 100 mA cm-2.

Optimized Carrier Extraction at Interfaces for 23.6% Efficient Tin–Lead Perovskite Solar Cells

(2021)

Authors:

Shuaifeng Hu, Kento Otsuka, Richard Murdey, Tomoya Nakamura, Minh Anh Truong, Takumi Yamada, Taketo Handa, Kazuhiro Matsuda, Kyohei Nakano, Atsushi Sato, Kazuhiro Marumoto, Keisuke Tajima, Yoshihiko Kanemitsu, Atsushi Wakamiya

Observation of Charge Generation via Photoinduced Stark Effect in Mixed-Cation Lead Bromide Perovskite Thin Films.

The journal of physical chemistry letters 11:23 (2020) 10081-10087

Authors:

Nhu L Tran, Madeline H Elkins, David P McMeekin, Henry J Snaith, Gregory D Scholes

Abstract:

Extensive transient absorption studies on hybrid organic-inorganic lead halide perovskites have elucidated many optical properties important for their device performance. Despite the enormous progress, the derivative shaped photoinduced absorption feature in transient spectra that is above the bandgap has many explanations, including the photoinduced Stark effect, where the bandgap is blue shifted due to a local electric field generated by charges. In this work, we employ broad band transient absorption and two-dimensional electronic spectroscopy (2DES) to examine the early transient events after photoexcitation of [CH(NH2)2]0.83Cs0.17PbBr3 (FA0.83Cs0.17PbBr3). 2DES resolves a photomodulation feature at the excitation energy of the exciton, suggesting the presence of a dipole field created by a polaron pair shifting the exciton transition to higher energies. As this polaron pair dissociates over 200 fs, the exciton transition shifts to higher energies over the same time scale, evidenced by the 2DES diagonal energy spectra. Given that the observations are well explained in terms of the Stark effect, our work provides extra grounds to support the Stark effect assignment of the above-gap photoinduced absorption. Furthermore, our study reports on the time scale of charge generation, contributing to the fundamental understanding of mixed-cation lead bromide perovskite photophysics.

Dimethylammonium: An A‐site Cation for Modifying CsPbI3

Solar RRL Wiley (2020)

Authors:

Ashley R Marshall, Harry C Sansom, Melissa M McCarthy, Jonathan H Warby, Olivia J Ashton, Bernard Wenger, Henry J Snaith

Abstract:

All‐inorganic perovskite materials are attractive alternatives to organic‐inorganic perovskites because of their potential for higher thermal stability. While CsPbI3 is compositionally stable under elevated temperatures, the cubic perovskite α‐phase is thermodynamically stable only at >330°C and the low‐temperature perovskite γ−phase is metastable and highly susceptible to non‐perovskite δ‐phase conversion in moisture. Many methods have been reported which show that incorporation of acid (aqueous HI) or “HPbI3” – recently shown to be dimethylammonium lead iodide (DMAPbI3) – lower the annealing temperature required to produce the black, perovskite phase of CsPbI3. The optical and crystallographic data presented here show that DMA can successfully incorporate as an A‐site cation to replace Cs in the CsPbI3 perovskite material. This describes the stabilization and lower phase transition temperature reported in the literature when HI or HPbI3 are used as precursors for CsPbI3. The Cs‐DMA alloy only forms a pure‐phase material up to ∽25% DMA; at higher concentrations the CsPbI3 and DMAPbI3 begin to phase segregate. These alloyed materials are more stable to moisture than neat CsPbI3, but do not represent a fully inorganic perovskite material.

Time-Resolved Changes in Dielectric Constant of Metal Halide Perovskites under Illumination.

Journal of the American Chemical Society 142:47 (2020) 19799-19803

Authors:

Min Ji Hong, Liangdong Zhu, Cheng Chen, Longteng Tang, Yen-Hung Lin, Wen Li, Rose Johnson, Shirsopratim Chattopadhyay, Henry J Snaith, Chong Fang, John G Labram

Abstract:

Despite their impressive performance as a solar absorber, much remains unknown on the fundamental properties of metal halide perovskites (MHPs). Their polar nature in particular is an intense area of study, and the relative permittivity (εr) is a parameter widely used to quantify polarization over a range of different time scales. In this report, we have exploited frequency-dependent time-resolved microwave conductivity (TRMC) to study how εr values of a range of MHPs change as a function of time, upon optical illumination. Further characterization of charge carriers and polarizability are conducted by femtosecond transient absorption and stimulated Raman spectroscopy. We find that changes in εr are roughly proportional to photogenerated carrier density but decay with a shorter time constant than conductance, suggesting that the presence of charge carriers alone does not determine polarization.