Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors

Nature Communications Springer Nature 10 (2019) 4475

Authors:

Yen-Hung Lin, W Huang, P Pattanasattayavong, J Lim, R Li, N Sakai, J Panidi, MJ Hong, C Ma, N Wei, N Wehbe, Z Fei, M Heeney, JG Labram, TD Anthopoulos, HJ Snaith

Crystallographic characterization of Er2C2@C2(43)-C90, Er2C2@C2(40)-C90, Er2C2@C2(44)-C90, and Er2C2@C1(21)-C90: the role of cage-shape on cluster configuration.

Nanoscale 11:37 (2019) 17319-17326

Authors:

Shuaifeng Hu, Wangqiang Shen, Pei Zhao, Ting Xu, Zdeněk Slanina, Masahiro Ehara, Xiang Zhao, Yunpeng Xie, Takeshi Akasaka, Xing Lu

Abstract:

For endohedral metallofullerenes (EMFs), that is, fullerenes encapsulating metallic species, cage size is known to be an important factor for cluster configuration adoption; however, the impact of the cage shape on the cluster geometry fitting remains poorly understood. Herein, for the first time, four dierbium-carbide EMFs with C90 cages, namely, Er2C2@C2(43)-C90, Er2C2@C2(40)-C90, Er2C2@C2(44)-C90, and Er2C2@C1(21)-C90, were successfully synthesized and fully characterized using a combination of mass spectrometry, single-crystal X-ray diffractometry, vis-NIR, Raman and photoluminescence spectroscopies, and cyclic voltammetry. In particular, the fullerene cages of C2(43)-C90 and C2(44)-C90 are crystallographically identified for the first time. Interestingly, the ErEr distance of the major sites in Er2C2@C2(43)-C90, Er2C2@C2(40)-C90, Er2C2@C2(44)-C90, and Er2C2@C1(21)-C90 is 3.927, 4.058, 4.172, and 4.651 Å, respectively, which increases gradually with an increase in the major axis of the cage. Moreover, the bond length of the inner C2-unit decreases progressively with an increase in the ErEr distance, indicating that the inserted C2-unit can serve as a molecular spring to support the strong metal-cage interactions within cages with the same size but different shapes. Hence, the role of cage shape on the cluster configuration is unveiled safely for the as-obtained Er2C2@C90 isomers.

Supramolecular Coordination of Pb2+ Defects in Hybrid Lead Halide Perovskite Films Using Truxene Derivatives as Lewis Base Interlayers.

Chemphyschem : a European journal of chemical physics and physical chemistry 20:20 (2019) 2702-2711

Authors:

Ece Aktas, Jesús Jiménez-López, Cristina Rodríguez-Seco, Rajesh Pudi, Manuel A Ortuño, Núria López, Emilio Palomares

Abstract:

Truxene derivatives, due to their molecular structure and properties, are good candidates for the passivation of defects when deposited onto hybrid lead halide perovskite thin films. Moreover, their semiconductor characteristics can be tailored through the modification of their chemical structure, which allows-upon light irradiation- the interfacial charge transfer between the perovskite film and the truxene molecules. In this work, we analysed the use of the molecules as surface passivation agents and their use in complete functional solar cells. We observed that these molecules reduce the non-radiative carrier recombination dynamics in the perovskite thin film through the supramolecular complex formation between the Truxene molecule and the Pb2+ defects at the perovskite surface. Interestingly, this supramolecular complexation neither affect the carrier recombination kinetics nor the carriers collection but induced noticeable hysteresis on the photocurrent vs voltage curves of the solar cells under 1 sun illumination.

Charge-carrier cooling and polarization memory loss in formamidinium tin triiodide

Journal of Physical Chemistry Letters American Chemical Society 10:20 (2019) 6038-6047

Authors:

Kimberley Savill, Matthew Klug, RL Milot, Henry Snaith, Laura Herz

Abstract:

Combination of a cryogenic ion-trap machine, operated at 4.7 K, with the free-electron-laser FELIX allows the first experimental characterization of the unusually bright antisymmetric stretch (ν3) and π-bending (ν2) fundamentals of the He–X+–He (X = H, D) chromophore of the in situ prepared HHen+ and DHen+ (n = 3–6) complexes. The band origins obtained are fully supported by first-principles quantum-chemical computations, performed at the MP2, the CCSD(T), and occasionally the CCSDTQ levels employing extended basis sets. Both the experiments and the computations are consistent with structures for the species with n = 3 and 6 being of T-shaped C2v and of D4h symmetry, respectively, while the species with n = 4 are suggested to exhibit interesting dynamical phenomena related to large-amplitude motions.

Oxidative passivation of metal halide perovskites

Joule Cell Press 3:11 (2019) 2716-2731

Authors:

Julian Godding, Alexandra Ramadan, Yen-Hung Lin, Kelly Schutt, Henry J Snaith, Bernard Wenger

Abstract:

Metal halide perovskites have demonstrated extraordinary potential as materials for next-generation optoelectronics including photovoltaics and light-emitting diodes. Nevertheless, our understanding of this material is still far from complete. One remaining puzzle is the phenomenon of perovskite “photo-brightening”: the increase in photoluminescence during exposure to light in an ambient atmosphere. Here, we propose a comprehensive mechanism for the reactivity of the archetypal perovskite, MAPbI3, in ambient conditions. We establish the formation of lead-oxygen bonds by hydrogen peroxide as the key factor leading to perovskite photo-brightening. We demonstrate that hydrogen peroxide can be applied directly as an effective “post-treatment” to emulate the process and substantially improve photoluminescence quantum efficiencies. Finally, we show that the treatment can be incorporated into photovoltaic devices to give a 50 mV increase in open-circuit voltage, delivering high 19.2% steady-state power conversion efficiencies for inverted perovskite solar cells of the mixed halide, mixed cation perovskite FA0.83Cs0.17Pb(I0.9Br0.1)3.