Crystallographic and Theoretical Investigations of Er2 @C2 n (2 n=82, 84, 86): Indication of Distance-Dependent Metal-Metal Bonding Nature.

Chemistry (Weinheim an der Bergstrasse, Germany) 25:49 (2019) 11538-11544

Authors:

Shuaifeng Hu, Wangqiang Shen, Le Yang, Guangxiong Duan, Peng Jin, Yunpeng Xie, Takeshi Akasaka, Xing Lu

Abstract:

Successful isolation and characterization of a series of Er-based dimetallofullerenes present valuable insights into the realm of metal-metal bonding. These species are crystallographically identified as Er2 @Cs (6)-C82 , Er2 @C3v (8)-C82 , Er2 @C1 (12)-C84 , and Er2 @C2v (9)-C86 , in which the structure of the C1 (12)-C84 cage is unambiguously characterized for the first time by single-crystal X-ray diffraction. Interestingly, natural bond orbital analysis demonstrates that the two Er atoms in Er2 @Cs (6)-C82 , Er2 @C3v (8)-C82 , and Er2 @C2v (9)-C86 form a two-electron-two-center Er-Er bond. However, for Er2 @C1 (12)-C84 , with the longest Er⋅⋅⋅Er distance, a one-electron-two-center Er-Er bond may exist. Thus, the difference in the Er⋅⋅⋅Er separation indicates distinct metal bonding natures, suggesting a distance-dependent bonding behavior for the internal dimetallic cluster. Additionally, electrochemical studies suggest that Er2 @C82-86 are good electron donors instead of electron acceptors. Hence, this finding initiates a connection between metal-metal bonding chemistry and fullerene chemistry.

Fabrication of Efficient and Stable CsPbI3 Perovskite Solar Cells through Cation Exchange Process

Advanced Energy Materials Wiley 9:36 (2019)

Authors:

Cho Fai Jonathan Lau, Zhiping Wang, Nobuya Sakai, Jianghui Zheng, Chwen Haw Liao, Martin Green, Shujuan Huang, Henry J Snaith, Anita Ho‐Baillie

Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites.

ACS energy letters 4:9 (2019) 2301-2307

Authors:

Alan R Bowman, Matthew T Klug, Tiarnan AS Doherty, Michael D Farrar, Satyaprasad P Senanayak, Bernard Wenger, Giorgio Divitini, Edward P Booker, Zahra Andaji-Garmaroudi, Stuart Macpherson, Edoardo Ruggeri, Henning Sirringhaus, Henry J Snaith, Samuel D Stranks

Abstract:

Mixed lead-tin halide perovskites have sufficiently low bandgaps (∼1.2 eV) to be promising absorbers for perovskite-perovskite tandem solar cells. Previous reports on lead-tin perovskites have typically shown poor optoelectronic properties compared to neat lead counterparts: short photoluminescence lifetimes (<100 ns) and low photoluminescence quantum efficiencies (<1%). Here, we obtain films with carrier lifetimes exceeding 1 μs and, through addition of small quantities of zinc iodide to the precursor solutions, photoluminescence quantum efficiencies under solar illumination intensities of 2.5%. The zinc additives also substantially enhance the film stability in air, and we use cross-sectional chemical mapping to show that this enhanced stability is because of a reduction in tin-rich clusters. By fabricating field-effect transistors, we observe that the introduction of zinc results in controlled p-doping. Finally, we show that zinc additives also enhance power conversion efficiencies and the stability of solar cells. Our results demonstrate substantially improved low-bandgap perovskites for solar cells and versatile electronic applications.

Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics

Energy and Environmental Science Royal Society of Chemistry (2019)

Authors:

Nakita Noel, Habisreutinger, A Pellaroque, F Pulvirenti, Bernard Wenger, F Zhang, Yen-Hung Lin, OG Reid, J Leisen, Y Zhang, S Barlow, Marder, A Kahn, HJ Snaith, CB Arnold, BP Rand

Abstract:

We demonstrate a method for controlled p-doping of the halide perovskite surface using molecular dopants, resulting in reduced non-radiative recombination losses and improved device performance.

Light induced degradation in mixed-halide perovskites

Journal of Materials Chemistry C Royal Society of Chemistry (RSC) 7:30 (2019) 9326-9334

Authors:

Shuai Ruan, Maciej-Adam Surmiak, Yinlan Ruan, David P McMeekin, Heike Ebendorff-Heidepriem, Yi-Bing Cheng, Jianfeng Lu, Christopher R McNeill