Photovoltaic solar cell technologies: analysing the state of the art

Nature Reviews Materials Nature Research 4:4 (2019) 269-285

Authors:

Pabitra Nayak, S Mahesh, HJ Snaith, D Cahen

Solution-Processed All-Perovskite Multi-junction Solar Cells

Joule 3:2 (2019) 387-401

Authors:

DP McMeekin, S Mahesh, NK Noel, MT Klug, JC Lim, JH Warby, JM Ball, LM Herz, MB Johnston, HJ Snaith

Abstract:

© 2019 Multi-junction device architectures can increase the power conversion efficiency (PCE) of photovoltaic (PV) cells beyond the single-junction thermodynamic limit. However, these devices are challenging to produce by solution-based methods, where dissolution of underlying layers is problematic. By employing a highly volatile acetonitrile(CH 3 CN)/methylamine(CH 3 NH 2 ) (ACN/MA) solvent-based perovskite solution, we demonstrate fully solution-processed absorber, transport, and recombination layers for monolithic all-perovskite tandem and triple-junction solar cells. By combining FA 0.83 Cs 0.17 Pb(Br 0.7 I 0.3 ) 3 (1.94 eV) and MAPbI 3 (1.57 eV) junctions, we reach two-terminal tandem PCEs of more than 15% (steady state). We show that a MAPb 0.75 Sn 0.25 I 3 (1.34 eV) narrow band-gap perovskite can be processed via the ACN/MA solvent-based system, demonstrating the first proof-of-concept, monolithic all-perovskite triple-junction solar cell with an open-circuit voltage reaching 2.83 V. Through optical and electronic modeling, we estimate the achievable PCE of a state-of-the-art triple-junction device architecture to be 26.7%. Our work opens new possibilities for large-scale, low-cost, printable perovskite multi-junction solar cells. Silicon-based solar cells are dominating today's solar energy market. However, their efficiencies will soon reach their maximum practical limit. Without any gains in efficiency, price reductions will become increasingly difficult to achieve. Tandem and multi-junction architectures can overcome this single-junction efficiency limit. Perovskite materials offer both band-gap tunability and solution processability. This unique combination of properties allows for fabrication of multi-junction solar cells using high-throughput deposition techniques such as blade coating, roll-to-roll, gravure coating or inkjet printing. However, these solar cells have yet to be fabricated using these deposition techniques due to difficulties in sequentially depositing these semiconductors. By utilizing an acetonitrile/methylamine-based solvent, we demonstrate the first monolithic all-perovskite multi-junction solar cells fabricated via solution processing of all active layers, apart from the electrodes. Perovskite solar cells can be processed using solution-based methods. Furthermore, perovskite solar cells can tune their band gap to absorb different portions of the solar spectrum. This property allows for fabrication of multi-junction solar cell, which can offer higher power conversion efficiencies than single-junction architecture. Here, we combine both features to fabricate the first solution-processed, monolithic, all-perovskite tandem and triple-junction solar cells.

Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%

Advanced Energy Materials Wiley 9:14 (2019) 1803241

Authors:

L Mazzarella, S Kirner, Morales-Vilches, L Korte, S Albrecht, E Crossland, B Stannowski, C Case, Henry Snaith, R Schlatmann, Yen-Hung Lin

Abstract:

Perovskite/silicon tandem solar cells are attractive for their potential for boosting cell efficiency beyond the crystalline silicon (Si) single-junction limit. However, the relatively large optical refractive index of Si, in comparison to that of transparent conducting oxides and perovskite absorber layers, results in significant reflection losses at the internal junction between the cells in monolithic (two-terminal) devices. Therefore, light management is crucial to improve photocurrent absorption in the Si bottom cell. Here it is shown that the infrared reflection losses in tandem cells processed on a flat silicon substrate can be significantly reduced by using an optical interlayer consisting of nanocrystalline silicon oxide. It is demonstrated that 110 nm thick interlayers with a refractive index of 2.6 (at 800 nm) result in 1.4 mA cm − ² current gain in the silicon bottom cell. Under AM1.5G irradiation, the champion 1 cm 2 perovskite/silicon monolithic tandem cell exhibits a top cell + bottom cell total current density of 38.7 mA cm −2 and a certified stabilized power conversion efficiency of 25.2%.

Elucidating the Long-range Charge Carrier Mobility in Metal Halide Perovskite Thin Films

Fundacio Scito (2019)

Authors:

Jongchul Lim, Bernard Wenger, Henry Snaith

Impurities and their influence on the co-evaporation of methylammonium perovskite thin-film solar cells

Fundacio Scito (2019)

Authors:

Juliane Bochert, Ievgen Levchuk, Lavina C Snoek, Mathias Uller Rothmann, Henry J Snaith, Christoph J Brabec, Laura M Herz, Michael B Johnston