Publisher Correction: High irradiance performance of metal halide perovskites for concentrator photovoltaics

Nature Energy Springer Nature America, Inc (2018)

Authors:

Z Wang, Q Lin, B Wenger, Mark Christoforo, Y-H Lin, MT Klug, MICHAEL Johnston, LAURA Herz, HJ Snaith

Abstract:

© 2018, Springer Nature Limited. When this Article was originally published, an old version of the associated Supplementary Information file was uploaded. This has now been replaced.

Efficient and Stable Perovskite Solar Cells Using Low-Cost Aniline-Based Enamine Hole-Transporting Materials.

Advanced materials (Deerfield Beach, Fla.) 30:45 (2018) e1803735

Authors:

Deimante Vaitukaityte, Zhiping Wang, Tadas Malinauskas, Artiom Magomedov, Giedre Bubniene, Vygintas Jankauskas, Vytautas Getautis, Henry J Snaith

Abstract:

Metal-halide perovskites offer great potential to realize low-cost and flexible next-generation solar cells. Low-temperature-processed organic hole-transporting layers play an important role in advancing device efficiencies and stabilities. Inexpensive and stable hole-transporting materials (HTMs) are highly desirable toward the scaling up of perovskite solar cells (PSCs). Here, a new group of aniline-based enamine HTMs obtained via a one-step synthesis procedure is reported, without using a transition metal catalyst, from very common and inexpensive aniline precursors. This results in a material cost reduction to less than 1/5 of that for the archetypal spiro-OMeTAD. PSCs using an enamine V1091 HTM exhibit a champion power conversion efficiency of over 20%. Importantly, the unsealed devices with V1091 retain 96% of their original efficiency after storage in ambient air, with a relative humidity of 45% for over 800 h, while the devices fabricated using spiro-OMeTAD dropped down to 42% of their original efficiency after aging. Additionally, these materials can be processed via both solution and vacuum processes, which is believed to open up new possibilities for interlayers used in large-area all perovskite tandem cells, as well as many other optoelectronic device applications.

Isolation and Crystallographic Characterization of Lu3 N@C2n (2n=80-88): Cage Selection by Cluster Size.

Chemistry (Weinheim an der Bergstrasse, Germany) 24:62 (2018) 16692-16698

Authors:

Wang-Qiang Shen, Li-Piao Bao, Shuai-Feng Hu, Xue-Jiao Gao, Yun-Peng Xie, Xing-Fa Gao, Wen-Huan Huang, Xing Lu

Abstract:

The small Sc3 N cluster has only been found in such small cages as C2n (2n=68, 78, 80, 82), whereas the large M3 N (M=Y, Gd, Tb, Tm) clusters choose those larger cages C2n (2n=82-88). Herein, concrete experimental evidence is presented to establish the size effect of the internal metallic cluster on selecting the outer cage of endohedral metallofullerenes (EMFs) by using a medium-sized metal, lutetium, which possesses an ionic radius between Sc and Gd. A series of lutetium-containing EMFs have been obtained and their structures are unambiguously determined as Lu3 N@Ih (7)-C80 , Lu3 N@D5h (6)-C80 , Lu3 N@C2v (9)-C82 , Lu3 N@Cs (51365)-C84 , Lu3 N@D3 (17)-C86 , and Lu3 N@D2 (35)-C88 by single-crystal X-ray diffraction crystallography. It was confirmed that the encaged Lu3 N cluster always adopts a planar geometry in Lu3 N@C80-88 isomers to ensure substantial metal-cage/metal-nitrogen interactions. As a result, the Lu3 N cluster selects the C2v (9)-C82 cage, which also encapsulates Sc3 N, instead of the Cs (39663)-C82 cage which is more suitable for M3 N (M=Y, Gd, Tb, Tm). However, different from Sc3 N, Lu3 N can also template the C84-88 cages which are absent for Sc3 N-containing EMFs, confirming clearly the size effect of the internal cluster on selecting the outer cage.

The phosphine oxide route toward lead halide perovskite nanocrystals

Journal of the American Chemical Society American Chemical Society 140:44 (2018) 14878-14886

Authors:

G Almeida, Olivia Ashton, L Goldoni, D Maggioni, U Petralanda, N Mishra, QA Akkerman, I Infante, Henry J Snaith, L Manna

Abstract:

We report an amine-free synthesis of lead halide perovskite (LHP) nanocrystals, using trioctylphosphine oxide (TOPO) instead of aliphatic amines, in combination with a protic acid (e.g., oleic acid). The overall synthesis scheme bears many similarities to the chemistry behind the preparation of LHP thin films and single crystals, in terms of ligand coordination to the chemical precursors. The acidity of the environment and hence the extent of protonation of the TOPO molecules tune the reactivity of the PbX2 precursor, regulating the size of the nanocrystals. On the other hand, TOPO molecules are virtually absent from the surface of our nanocrystals, which are simply passivated by one type of ligand (e.g., Cs-oleate). Furthermore, our studies reveal that Cs-oleate is dynamically bound to the surface of the nanocrystals and that an optimal surface coverage is critical for achieving high photoluminescence quantum yield. Our scheme delivers NCs with a controlled size and shape: only cubes are formed, with no contamination with platelets, regardless of the reaction conditions that were tested. We attribute such a shape homogeneity to the absence of primary aliphatic amines in our reaction environment, since these are known to promote the formation of nanocrystals with sheet/platelet morphologies or layered phases under certain reaction conditions. The TOPO route is particularly appealing with regard to synthesizing LHP nanocrystals for large-scale manufacturing, as the yield in terms of material produced is close to the theoretical limit: i.e., almost all precursors employed in the synthesis are converted into nanocrystals.

Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells

ACS Energy Letters American Chemical Society (ACS) 3:10 (2018) 2472-2476

Authors:

Severin N Habisreutinger, Nakita K Noel, Henry J Snaith