Planar perovskite solar cells with long-term stability using ionic liquid additives

Nature Springer Nature 571:7764 (2019) 245-250

Authors:

S Bai, P Da, C Li, Z Wang, Y Zhongcheng, F Fan, K Maciej, L Xianjie, Nobuya Sakai, JT-W Wang, S Huetter, S Bucheler, M Fahlman, F Gao, Henry Snaith

Abstract:

Solar cells based on metal halide perovskites are one of the most promising photovoltaic technologies1,2,3,4. Over the past few years, the long-term operational stability of such devices has been greatly improved by tuning the composition of the perovskites5,6,7,8,9, optimizing the interfaces within the device structures10,11,12,13, and using new encapsulation techniques14,15. However, further improvements are required in order to deliver a longer-lasting technology. Ion migration in the perovskite active layer—especially under illumination and heat—is arguably the most difficult aspect to mitigate16,17,18. Here we incorporate ionic liquids into the perovskite film and thence into positive–intrinsic–negative photovoltaic devices, increasing the device efficiency and markedly improving the long-term device stability. Specifically, we observe a degradation in performance of only around five per cent for the most stable encapsulated device under continuous simulated full-spectrum sunlight for more than 1,800 hours at 70 to 75 degrees Celsius, and estimate that the time required for the device to drop to eighty per cent of its peak performance is about 5,200 hours. Our demonstration of long-term operational, stable solar cells under intense conditions is a key step towards a reliable perovskite photovoltaic technology.

High Responsivity and Response Speed Single‐Layer Mixed‐Cation Lead Mixed‐Halide Perovskite Photodetectors Based on Nanogap Electrodes Manufactured on Large‐Area Rigid and Flexible Substrates

Advanced Functional Materials Wiley 29:28 (2019)

Authors:

Dimitra G Georgiadou, Yen‐Hung Lin, Jongchul Lim, Sinclair Ratnasingham, Martyn A McLachlan, Henry J Snaith, Thomas D Anthopoulos

Inverted perovskite solar cells with air stable diketopyrrolopyrrole-based electron transport layer

Solar Energy Elsevier 186 (2019) 9-16

Authors:

Shikha Sharma, Nobuya Sakai, Suman Ray, Satyaprasad P Senanayak, Henning Sirringhaus, Henry J Snaith, Satish Patil

Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high performance solar cells

Advanced Functional Materials Wiley 29:47 (2019) 1900466

Authors:

Kelly Schutt, P Nayak, A Ramadan, B Wenger, Y-H Lin, H Snaith

Abstract:

Perovskite solar cells have achieved the highest power conversion efficiencies on metal oxide n‐type layers, including SnO2 and TiO2. Despite ZnO having superior optoelectronic properties to these metal oxides, such as improved transmittance, higher conductivity, and closer conduction band alignment to methylammonium (MA)PbI3, ZnO is largely overlooked due to a chemical instability when in contact with metal halide perovskites, which leads to rapid decomposition of the perovskite. While surface passivation techniques have somewhat mitigated this instability, investigations as to whether all metal halide perovskites exhibit this instability with ZnO are yet to be undertaken. Experimental methods to elucidate the degradation mechanisms at ZnO–MAPbI3 interfaces are developed. By substituting MA with formamidinium (FA) and cesium (Cs), the stability of the perovskite–ZnO interface is greatly enhanced and it is found that stability compares favorably with SnO2‐based devices after high‐intensity UV irradiation and 85 °C thermal stressing. For devices comprising FA‐ and Cs‐based metal halide perovskite absorber layers on ZnO, a 21.1% scanned power conversion efficiency and 18% steady‐state power output are achieved. This work demonstrates that ZnO appears to be as feasible an n‐type charge extraction layer as SnO2, with many foreseeable advantages, provided that MA cations are avoided.

Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes

Nature Communications Springer Nature 10:1 (2019) 2818

Authors:

Zhongcheng Yuan, Yanfeng Miao, Zhangjun Hu, Weidong Xu, Chaoyang Kuang, Kang Pan, Pinlei Liu, Jingya Lai, Baoquan Sun, Jianpu Wang, Sai Bai, Feng Gao