Disk dynamics and planet migration
EAS Publications Series 41 (2010) 209-218
Abstract:
We review models of protoplanetary disks. In the earlier stages of evolution, disks are subject to gravitational instabilities that redistribute mass and angular momentum on short timescales. Later on, when the mass of the disk is below ten percent or so of that of the central star, accretion occurs through the magnetorotational instability. The parts of the disks that are not ionized enough to couple to the magnetic field may not accrete or accrete inefficiently. We also review theories of planet migration. Tidal interaction between a disk and an embedded planet leads to angular momentum exchange between the planetary orbital motion and the disk rotation. This results in low mass planets migrating with respect to the gas in the disk, while massive planets open up a gap in the vicinity of their orbit and migrate in as the disk is accreted. © EAS, EDP Sciences, 2010.Distance determination for RAVE stars using stellar models
Astronomy and Astrophysics 511:1 (2010)
Abstract:
Aims: We develop a method for deriving distances from spectroscopic data and obtaining full 6D phase-space coordinates for the RAVE survey's second data release. Methods: We used stellar models combined with atmospheric properties from RAVE (effective temperature, surface gravity and metallicity) and (J - Ks) photometry from archival sources to derive absolute magnitudes. In combination with apparent magnitudes, sky coordinates, proper motions from a variety of sources and radial velocities from RAVE, we are able to derive the full 6D phasespace coordinates for a large sample of RAVE stars. This method is tested with artificial data, Hipparcos trigonometric parallaxes and observations of the open cluster M67. Results: When we applied our method to a set of 16 146 stars, we found that 25% (4037) of the stars have relative (statistical) distance errors of <35%, while 50% (8073) and 75% (12 110) have relative (statistical) errors smaller than 45% and 50%, respectively. Our various tests show that we can reliably estimate distances for main-sequence stars, but there is an indication of potential systematic problems with giant stars owing to uncertainties in the underlying stellar models. For the main-sequence star sample (defined as those with log(g) > 4), 25% (1744) have relative distance errors <31%, while 50% (3488) and 75% (5231) have relative errors smaller than 36% and 42%, respectively. Our full dataset shows the expected decrease in the metallicity of stars as a function of distance from the Galactic plane. The known kinematic substructures in the U and V velocity components of nearby dwarf stars are apparent in our dataset, confirming the accuracy of our data and the reliability of our technique. We provide independent measurements of the orientation of the UV velocity ellipsoid and of the solar motion, and they are in very good agreement with previous work. Conclusions: The distance catalogue for the RAVE second data release is available at http://www.astro.rug.nl/~rave, and will be updated in the future to include new data releases. © 2010 ESO.When is Uniform Rotation an Energy Minimum?
Mexican Journal of Physics E (2010)
Abstract:
A simple variational calculation is presented showing that a uniformly rotating barotropic fluid in an external potential attains a true energy minimum if and only if the rotation profile is everywhere subsonic. If regions of supersonic rotation are present, fluid variations exist that could take the sytem to states of lower energy. In any given system, these states may or may not be dynamically accessible, but their existence is important. It means that extending the degrees of freedom available to the fluid (say by weak magnetic fields) may open a path to fluid instabilities. Whether astrophysical gaseous nebula tend toward states of uniform rotation or toward more Keplerian core-disk systems appears to be largely a matter of whether the rotation profile is transonic or not. The suggestion is made that the length scale associated with coherent molecular cloud cores is related to the requirement that the cores be stable and rotate subsonically.AstroGK: Astrophysical gyrokinetics code
Journal of Computational Physics Elsevier 229:24 (2010) 9347-9372
The RAVE survey: Rich in very metal-poor stars
Astrophysical Journal Letters 724:1 PART 2 (2010)