The slope of the black hole mass versus velocity dispersion correlation

Astrophysical Journal Letters 574:2 I (2002) 740-753

Authors:

S Tremaine, K Gebhardt, R Bender, G Bower, A Dressler, SM Faber, AV Filippenko, R Green, C Grillmair, LC Ho, J Kormendy, TR Lauer, J Magorrian, J Pinkney, D Richstone

Abstract:

Observations of nearby galaxies reveal a strong correlation between the mass of the central dark object MBH and the velocity dispersion σ of the host galaxy, of the form log(MBH/M⊙) = α + βlog(σ/σ0); however, published estimates of the slope β span a wide range (3.75-5.3). Merritt & Ferrarese have argued that low slopes (≲4) arise because of neglect of random measurement errors in the dispersions and an incorrect choice for the dispersion of the Milky Way Galaxy. We show that these explanations and several others account for at most a small part of the slope range. Instead, the range of slopes arises mostly because of systematic differences in the velocity dispersions used by different groups for the same galaxies. The origin of these differences remains unclear, but we suggest that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersions to re/8 (re is the effective radius) using an empirical formula. Another component may arise from dispersion-dependent systematic errors in the measurements. A new determination of the slope using 31 galaxies yields β= 4.02 ± 0.32, α = 8.13 ± 0.06 for σ 0 = 200 km s-1. The MBH-σ relation has an intrinsic dispersion in log MBH that is no larger than 0.25-0.3 dex and may be smaller if observational errors have been underestimated. In an appendix, we present a simple kinematic model for the velocity-dispersion profile of the Galactic bulge.

Model of Radial Plasma-Wall Interactions in a Hall Thruster

American Institute of Aeronautics and Astronautics (AIAA) (2002)

Authors:

Eduardo Ahedo, Felix Parra

Two-body relaxation in cosmological simulations

Monthly Notices of the Royal Astronomical Society 333:2 (2002) 378-382

Authors:

J Binney, A Knebe

Abstract:

It is logically possible that early two-body relaxation in simulations of cosmological clustering influences the final structure of massive clusters. Convergence studies in which mass and spatial resolution are simultaneously increased cannot eliminate this possibility. We test the importance of two-body relaxation in cosmological simulations with simulations in which there are two species of particles. The cases of two mass ratios, √2:1 and 4:1, are investigated. Simulations are run with both a spatially fixed softening length and adaptive softening using the publicly available codes GADGET and MLAPM, respectively. The effects of two-body relaxation are detected in both the density profiles of haloes and the mass function of haloes. The effects are more pronounced with a fixed softening length, but even in this case they are not so large as to suggest that results obtained with one mass species are significantly affected by two-body relaxation. The simulations that use adaptive softening are less affected by two-body relaxation and produce slightly higher central densities in the largest haloes. They run about three times faster than the simulations that use a fixed softening length.

Dynamical relaxation and the orbits of low-mass extrasolar planets

Monthly Notices of the Royal Astronomical Society 332:2 (2002)

Authors:

C Terquem, JCB Papaloizou

Abstract:

We consider the evolution of a system containing a population of massive planets formed rapidly through a fragmentation process occurring on a scale on the order of 100 au and a lower mass planet that assembles in a disc on a much longer time-scale. During the formation phase, the inner planet is kept on a circular orbit owing to tidal interaction with the disc, while the outer planets undergo dynamical relaxation. Interaction with the massive planets left in the system after the inner planet forms may increase the eccentricity of the inner orbit to high values, producing systems similar to those observed.

Observable consequences of cold clouds as dark matter

Monthly Notices of the Royal Astronomical Society 332:2 (2002)

Authors:

E Kerins, J Binney, J Silk

Abstract:

Cold, dense clouds of gas have been proposed to explain the dark matter in Galactic haloes, and have also been invoked in the Galactic disc as an explanation for the excess faint submillimetre sources detected by SCUBA. Even if their dust-to-gas ratio is only a small percentage of that in conventional gas clouds, these dense systems would be opaque to visible radiation. We examine the possibility that the data sets of microlensing experiments searching for massive compact halo objects can also be used to search for occultation signatures by such clouds. We compute the rate and time-scale distribution of stellar transits by clouds in the Galactic disc and halo. We find that, for cloud parameters typically advocated by theoretical models, thousands of transit events should already exist within microlensing survey data sets. We examine the seasonal modulation in the rate caused by the Earth's orbital motion and find it provides an excellent probe of whether detected clouds are of disc or halo origin.