Lead-free halide double perovskites via heterovalent substitution of noble metals
Journal of Physical Chemistry Letters American Chemical Society 7:7 (2016) 1254-1259
Abstract:
Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV–vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals
(2016)
Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites
The Journal of Physical Chemistry C American Chemical Society (ACS) 120:1 (2016) 166-173
Vibrational properties of the organic inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first-principles calculations, and low-temperature infrared spectra
Journal Of Physical Chemistry C American Chemical Society 119:46 (2015) 25703-25718
Abstract:
In this work, we investigate the vibrational properties of the hybrid organic/inorganic halide perovskite MAPbI3 (MA = CH3NH3) in the range 6-3500 cm-1 by combining first-principles density-functional perturbation theory calculations and low-temperature infrared (IR) absorption measurements on evaporated perovskite films. By using a group factor analysis, we establish the symmetry of the normal modes of vibration and predict their IR and Raman activity. We validate our analysis via explicit calculation of the IR intensities. Our calculated spectrum is in good agreement with our measurements. By comparing theory and experiment, we are able to assign most of the features in the IR spectrum. Our analysis shows that the IR spectrum of MAPbI3 can be partitioned into three distinct regions: the internal vibrations of the MA cations (800-3100 cm-1), the cation librations (140-180 cm-1), and the internal vibrations of the PbI3 network (<100 cm-1). The low-frequency region of the IR spectrum is dominated by Pb-I stretching modes of the PbI3 network with Bu symmetry and librational modes of the MA cations. In addition, we find that the largest contributions to the static dielectric constant arise from Pb-I stretching and Pb-I-Pb rocking modes, and that one low-frequency B2u Pb-I stretching mode exhibits a large LO-TO splitting of 50 cm-1.GW Band Structures and Carrier Effective Masses of CH3NH3PbI3 and Hypothetical Perovskites of the Type APbI3: A = NH4, PH4, AsH4, and SbH4
The Journal of Physical Chemistry C American Chemical Society (ACS) 119:45 (2015) 25209-25219