Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids
Chemistry of Materials American Chemical Society 28:13 (2016) 4554-4562
Abstract:
We use a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic/inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic cations. The shortest alkyls yield two-dimensional structures consisting of inorganic sheets of corner-sharing PbI6-octahedra. However, the longer alkyls induce both corner- and face-sharing of the PbI6-octahedra, and form new compounds. Density functional theory calculations including spin–orbit coupling show quantum confinement in two dimensions for the shorter alkyls, and in one dimension for the longer alkyls, respectively. The face-sharing PbI6-octahedra create a confinement leading to effectively one-dimensional behavior. These confinement effects are responsible for the observed peak shifts in photoluminescence for the different phenylalkylammonium lead iodide hybrids. Our results show how the connectivity of the octahedra leads to confinement effects that directly tune the optical band gap.Lead-free halide double perovskites via heterovalent substitution of noble metals
Journal of Physical Chemistry Letters American Chemical Society 7:7 (2016) 1254-1259
Abstract:
Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV–vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals
(2016)
Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites
The Journal of Physical Chemistry C American Chemical Society (ACS) 120:1 (2016) 166-173
Vibrational properties of the organic inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first-principles calculations, and low-temperature infrared spectra
Journal Of Physical Chemistry C American Chemical Society 119:46 (2015) 25703-25718