Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Calculated exciton wave function in a hybrid organic-inorganic layered halide perovskite
Credit: Figure created with VESTA; calculations performed with the BerkeleyGW code

Marina Filip

Associate Professor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Computational Condensed Matter Physics Group
  • Advanced Device Concepts for Next-Generation Photovoltaics
marina.filip@physics.ox.ac.uk
Clarendon Laboratory, room 109
  • About
  • Publications

Hybrid Halide Perovskites: Fundamental Theory and Materials Design

Chapter in Handbook of Materials Modeling, Springer Nature (2020) 295-324

Authors:

Marina R Filip, George Volonakis, Feliciano Giustino
More details from the publisher

Excitonic Properties of Lead-Halide Perovskites from First Principles Computational Modeling

Fundacio Scito (2019)

Authors:

Marina Filip, Jonah Haber, Jeffrey Neaton
More details from the publisher

Excitonic Properties of Lead-Halide Perovskites from First Principles Computational Modeling

Fundacio Scito (2019)

Authors:

Marina Filip, Jonah Haber, Jeffrey Neaton
More details from the publisher

Hybrid Halide Perovskites: Fundamental Theory and Materials Design

(2018)

Authors:

Marina R Filip, George Volonakis, Feliciano Giustino
More details from the publisher

Cubic or orthorhombic? Revealing the crystal structure of metastable black-phase CsPbI3 by theory and experiment

ACS Energy Letters American Chemical Society 3 (2018) 787-1794

Authors:

Rebecca Sutton, Marina Filip, A-A Haghighirad, Nobuya Sakai, B Wenger, Feliciano Giustino, Henry Snaith

Abstract:

Room-temperature films of black-phase caesium lead iodide (CsPbI3) are widely thought to be trapped in a cubic perovskite polymorph. Here, we challenge this assumption. We present structural refinement of room temperature black-phase CsPbI3 in an orthorhombic polymorph. We demonstrate that this polymorph is adopted by both powders and thin-films of black-phase CsPbI3, fabricated either by high- or low-temperature processes. We perform electronic band structure calculations for the orthorhombic polymorph and find agreement with experimental data and close similarities with orthorhombic methylammonium lead iodide. We investigate the structural transitions and thermodynamic stability of the various polymorphs of CsPbI3, and show that the orthorhombic polymorph is the most stable among its other perovskite polymorphs, but it remains less stable than the yellow non-perovskite polymorph.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet