Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Calculated exciton wave function in a hybrid organic-inorganic layered halide perovskite
Credit: Figure created with VESTA; calculations performed with the BerkeleyGW code

Marina Filip

Associate Professor

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Computational Condensed Matter Physics Group
  • Advanced Device Concepts for Next-Generation Photovoltaics
marina.filip@physics.ox.ac.uk
Clarendon Laboratory, room 109
  • About
  • Publications

The Geometric Blueprint of Perovskites

(2018)

Authors:

Marina R Filip, Feliciano Giustino
More details from the publisher

The geometric blueprint of perovskites

Proceedings of the National Academy of Sciences National Academy of Sciences 115:21 (2018) 5397-5402

Authors:

Marina R Filip, Feliciano Giustino

Abstract:

Perovskite minerals form an essential component of the Earth’s mantle, and synthetic crystals are ubiquitous in electronics, photonics, and energy technology. The extraordinary chemical diversity of these crystals raises the question of how many and which perovskites are yet to be discovered. Here we show that the “no-rattling” principle postulated by Goldschmidt in 1926, describing the geometric conditions under which a perovskite can form, is much more effective than previously thought and allows us to predict perovskites with a fidelity of 80%. By supplementing this principle with inferential statistics and internet data mining we establish that currently known perovskites are only the tip of the iceberg, and we enumerate 90,000 hitherto-unknown compounds awaiting to be studied. Our results suggest that geometric blueprints may enable the systematic screening of millions of compounds and offer untapped opportunities in structure prediction and materials design.
More details from the publisher
Details from ORA
More details
More details

Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process

Nature Communications Springer Nature 9 (2018) 293

Authors:

Christopher L Davies, Marina R Filip, Jay B Patel, Timothy W Crothers, Carla Verdi, Adam D Wright, Rebecca L Milot, Feliciano Giustino, Michael B Johnston, Laura Herz

Abstract:

Photovoltaic devices based on metal halide perovskites are rapidly improving in efficiency. Once the Shockley–Queisser limit is reached, charge-carrier extraction will be limited only by radiative bimolecular recombination of electrons with holes. Yet, this fundamental process, and its link with material stoichiometry, is still poorly understood. Here we show that bimolecular charge-carrier recombination in methylammonium lead triiodide perovskite can be fully explained as the inverse process of absorption. By correctly accounting for contributions to the absorption from excitons and electron-hole continuum states, we are able to utilise the van Roosbroeck–Shockley relation to determine bimolecular recombination rate constants from absorption spectra. We show that the sharpening of photon, electron and hole distribution functions significantly enhances bimolecular charge recombination as the temperature is lowered, mirroring trends in transient spectroscopy. Our findings provide vital understanding of band-to-band recombination processes in this hybrid perovskite, which comprise direct, fully radiative transitions between thermalized electrons and holes.
More details from the publisher
Details from ORA
More details
More details

Hybrid Halide Perovskites: Fundamental Theory and Materials Design

Chapter in Handbook of Materials Modeling, Springer Nature (2018) 1-30

Authors:

Marina R Filip, George Volonakis, Feliciano Giustino
More details from the publisher

Phase diagrams and stability of lead-free halide double perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I

Journal of Physical Chemistry C American Chemical Society 122:1 (2017) 158-170

Authors:

Marina R Filip, Xinlei Liu, A Miglio, G Hautier, Feliciano Giustino

Abstract:

Lead-free pnictogen/noble metal halide double perovskites Cs 2 BiAgCl 6 , Cs 2 BiAgBr 6 , and Cs 2 SbAgCl 6 are some of the most promising environmentally friendly alternatives to lead-halide perovskites. However, due to their relatively large band gaps (1.9-2.2 eV), they are not yet competitive candidates for use in photovoltaic devices. In this work, we perform a systematic study of the thermodynamic stability of the entire family of Cs 2 BB′X 6 compounds (B = Bi and Sb, B′ = Cu, Ag, and Au, and X = Cl, Br, and I), and we explore the possibility of chemical mixing as a route to stabilize pnictogen/noble metal halide perovskites with low band gaps. Our calculations indicate that Cs 2 BiAg 1-x Cu x Cl 6 mixes should be amenable to synthesis and could reduce the band gap down to 1.6-1.9 eV.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet