Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Boundaries can steer active Janus spheres.

Nature communications 6 (2015) 8999-8999

Authors:

Sambeeta Das, Astha Garg, Andrew I Campbell, Jonathan Howse, Ayusman Sen, Darrell Velegol, Ramin Golestanian, Stephen J Ebbens

Abstract:

The advent of autonomous self-propulsion has instigated research towards making colloidal machines that can deliver mechanical work in the form of transport, and other functions such as sensing and cleaning. While much progress has been made in the last 10 years on various mechanisms to generate self-propulsion, the ability to steer self-propelled colloidal devices has so far been much more limited. A critical barrier in increasing the impact of such motors is in directing their motion against the Brownian rotation, which randomizes particle orientations. In this context, here we report directed motion of a specific class of catalytic motors when moving in close proximity to solid surfaces. This is achieved through active quenching of their Brownian rotation by constraining it in a rotational well, caused not by equilibrium, but by hydrodynamic effects. We demonstrate how combining these geometric constraints can be utilized to steer these active colloids along arbitrary trajectories.
More details from the publisher
More details
More details

Intrinsic free energy in active nematics

EPL IOP Publishing 112:2 (2015) 28004-28004

Authors:

Sumesh P Thampi, Amin Doostmohammadi, Ramin Golestanian, Julia Yeomans

Abstract:

Basing our arguments on the theory of active liquid crystals, we demonstrate, both analytically and numerically, that the activity can induce an effective free energy which enhances ordering in extensile systems of active rods and in contractile suspensions of active discs. We argue that this occurs because any ordering fluctuation is enhanced by the flow field it produces. A phase diagram in the temperature-activity plane compares ordering due to a thermodynamic free energy to that resulting from the activity. We also demonstrate that activity can drive variations in concentration, but for a different physical reason that relies on the separation of hydrodynamic and diffusive time scales.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Driven active and passive nematics

Molecular Physics Taylor & Francis 113:17-18 (2015) 2656-2665

Authors:

Sumesh P Thampi, Ramin Golestanian, Julia M Yeomans
More details from the publisher

Enhanced Diffusion of Enzymes that Catalyze Exothermic Reactions

Physical Review Letters American Physical Society (APS) 115:10 (2015) 108102
More details from the publisher
More details
More details
Details from ArXiV

Self-assembly of active colloidal molecules with dynamic function

Physical Review E American Physical Society (APS) 91:5 (2015) 052304

Authors:

Rodrigo Soto, Ramin Golestanian
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Current page 39
  • Page 40
  • Page 41
  • Page 42
  • Page 43
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet