Electrokinetic effects in catalytic platinum-insulator Janus swimmers
EPL (Europhysics Letters) IOP Publishing 106:5 (2014) 58003
Clusters, asters, and collective oscillations in chemotactic colloids.
Physical review. E, Statistical, nonlinear, and soft matter physics 89:6 (2014) 062316
Abstract:
The creation of synthetic systems that emulate the defining properties of living matter, such as motility, gradient-sensing, signaling, and replication, is a grand challenge of biomimetics. Such imitations of life crucially contain active components that transform chemical energy into directed motion. These artificial realizations of motility point in the direction of a new paradigm in engineering, through the design of emergent behavior by manipulating properties at the scale of the individual components. Catalytic colloidal swimmers are a particularly promising example of such systems. Here we present a comprehensive theoretical description of gradient-sensing of an individual swimmer, leading controllably to chemotactic or anti-chemotactic behavior, and use it to construct a framework for studying their collective behavior. We find that both the positional and the orientational degrees of freedom of the active colloids can exhibit condensation, signaling formation of clusters and asters. The kinetics of catalysis introduces a natural control parameter for the range of the interaction mediated by the diffusing chemical species. For various regimes in parameter space in the long-ranged limit our system displays precise analogs to gravitational collapse, plasma oscillations, and electrostatic screening. We present prescriptions for how to tune the surface properties of the colloids during fabrication to achieve each type of behavior.Emergent cometlike swarming of optically driven thermally active colloids
Physical Review Letters 112:6 (2014)
Abstract:
We propose a simple system of optically driven colloids that convert light into heat and move in response to self-generated and collectively generated thermal gradients. We show that the system exhibits self-organization into a moving cometlike swarm and characterize the structure and response of the swarm to a light-intensity-dependent external tuning parameter. We observe many interesting features in this nonequilibrium system including circulation and evaporation, intensity-dependent shape, density and temperature fluctuations, and ejection of hot colloids from the swarm tip. © 2014 American Physical Society.Self-assembly of catalytically active colloidal molecules: Tailoring activity through surface chemistry
Physical Review Letters 112:6 (2014)
Abstract:
A heterogeneous and dilute suspension of catalytically active colloids is studied as a nonequilibrium analogue of ionic systems, which has the remarkable feature of action-reaction symmetry breaking. Symmetrically coated colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. The type of activity can be adjusted by changing the surface chemistry and ambient variables that control the surface reactions and the phoretic drift. © 2014 American Physical Society.Run-and-tumble dynamics in a crowded environment: Persistent exclusion process for swimmers
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 89:1 (2014)