Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Velocity Correlations in an Active Nematic

ArXiv 1302.6732 (2013)

Authors:

Sumesh P Thampi, Ramin Golestanian, Julia M Yeomans

Abstract:

The flow properties of a continuum model for an active nematic is studied and compared with recent experiments on suspensions of microtubule bundles and molecular motors. The velocity correlation length is found to be independent of the strength of the activity while the characteristic velocity scale increases monotonically as the activity is increased, both in agreement with the experimental observations. We interpret our results in terms of the creation and annihilation dynamics of a gas of topological defects.
Details from ArXiV
More details from the publisher
More details
More details

Reply to Comment on 'Length Scale Dependence of DNA Mechanical Properties'

ArXiv 1301.1541 (2013)

Authors:

Agnes Noy, Ramin Golestanian

Abstract:

Reply to Comment on 'Length Scale Dependence of DNA Mechanical Properties'
Details from ArXiV
More details from the publisher
Details from ORA
More details

Active matter

European Physical Journal E 36:6 (2013)

Authors:

R Golestanian, S Ramaswamy
More details from the publisher
More details

Active matter.

The European physical journal. E, Soft matter 36:6 (2013) 67

Authors:

R Golestanian, S Ramaswamy
More details from the publisher
More details

Hydrodynamic synchronization between objects with cyclic rigid trajectories

European Physical Journal E 35:12 (2012) 1-14

Authors:

N Uchida, R Golestanian

Abstract:

Synchronization induced by long-range hydrodynamic interactions is attracting attention as a candidate mechanism behind coordinated beating of cilia and flagella. Here we consider a minimal model of hydrodynamic synchronization in the low Reynolds number limit. The model consists of rotors, each of which assumed to be a rigid bead making a fixed trajectory under periodically varying driving force. By a linear analysis, we derive the necessary and sufficient conditions for a pair of rotors to synchronize in phase. We also derive a non-linear evolution equation for their phase difference, which is reduced to minimization of an effective potential. The effective potential is calculated for a variety of trajectory shapes and geometries (either bulk or substrated), for which the stable and metastable states of the system are identified. Finite size of the trajectory induces asymmetry of the potential, which also depends sensitively on the tilt of the trajectory. Our results show that flexibility of cilia or flagella is not a requisite for their synchronized motion, in contrast to previous expectations. We discuss the possibility to directly implement the model and verify our results by optically driven colloids.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet