Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

On the Landau-Levich transition.

Langmuir 23:20 (2007) 10116-10122

Authors:

Maniya Maleki, Etienne Reyssat, David Quéré, Ramin Golestanian

Abstract:

We discuss here the nature of the Landau-Levich transition, that is, the dynamical transition that occurs when drawing a solid out of a bath of a liquid that partially wets this solid. Above a threshold velocity, a film is entrained by the solid. We measure the macroscopic contact angle between the liquid and the solid by different methods, and conclude that this angle might be discontinuous at the transition. We also present a model to understand this fact and the shape of the meniscus as drawing the solid.
More details from the publisher
More details

Self-motile colloidal particles: from directed propulsion to random walk.

Phys Rev Lett 99:4 (2007) 048102

Authors:

Jonathan R Howse, Richard AL Jones, Anthony J Ryan, Tim Gough, Reza Vafabakhsh, Ramin Golestanian

Abstract:

The motion of an artificial microscale swimmer that uses a chemical reaction catalyzed on its own surface to achieve autonomous propulsion is fully characterized experimentally. It is shown that at short times it has a substantial component of directed motion, with a velocity that depends on the concentration of fuel molecules. At longer times, the motion reverts to a random walk with a substantially enhanced diffusion coefficient. Our results suggest strategies for designing artificial chemotactic systems.
More details from the publisher
More details
Details from ArXiV

Evolution of growth modes for polyelectrolyte bundles.

Phys Rev Lett 98:18 (2007) 187802

Authors:

Ghee Hwee Lai, Rob Coridan, Olena V Zribi, Ramin Golestanian, Gerard CL Wong

Abstract:

Multivalent ions induce attractions between polyelectrolytes, but lead to finite-sized bundles rather than macroscopic phase separation. The kinetics of aggregation and bundle formation of actin is tracked using two different fluorescently labeled populations of F-actin. It is found that the growth mode of these bundles evolves with time and salt concentration, varying from an initial lateral growth to a longitudinal one at later stages. The results suggest that kinetics play a role in bundle growth, but not in the lateral size of bundles, which is constant for linear and branched topologies.
More details from the publisher
More details

Noncontact racK and pinion powered by the lateral Casimir force.

Phys Rev Lett 98:14 (2007) 140801

Authors:

Arash Ashourvan, MirFaez Miri, Ramin Golestanian

Abstract:

The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to the nanoscale. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined. It is shown that the device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a weak interaction might suggest.
More details from the publisher
More details
Details from ArXiV

Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion.

Phys Rev E Stat Nonlin Soft Matter Phys 75:4 Pt 1 (2007) 040103

Authors:

Arash Ashourvan, Mirfaez Miri, Ramin Golestanian

Abstract:

The nonlinear dynamics of a cylindrical pinion that is kept at a distance from a vibrating rack is studied, and it is shown that the lateral Casimir force between the two corrugated surfaces can be rectified. The effects of friction and external load are taken into account, and it is shown that the pinion can do work against loads of up to a critical value, which is set by the amplitude of the lateral Casimir force. We present a phase diagram for the rectified motion that could help its experimental investigations, as the system exhibits a chaotic behavior in a large part of the parameter space.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • Current page 56
  • Page 57
  • Page 58
  • Page 59
  • Page 60
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet