Efficient in-depth trapping with an oil-immersion objective lens.
Opt Lett 31:6 (2006) 766-768
Abstract:
Maximum trapping efficiency in optical tweezers occurs close to the coverslip because spherical aberration owing to a mismatch in the refractive indices of the specimen (water) and the immersion oil dramatically decreases the trap efficiency as the trap depth increases. Measuring the axial trap efficiency at various tube lengths by use of an oil-immersion objective has shown that such an aberration can be balanced by another source of spherical aberration, leading to a shift in the position of the maximum efficiency in the Z direction. For a 1.1 microm polystyrene bead we could achieve the maximal efficiency at a depth of 70 microm, whereas the trap was stable up to a depth of 100 microm.Measuring lateral efficiency of optical traps: The effect of tube length
Optics Communications 259:1 (2006) 204-211
Abstract:
An optical tweezer setup is made based on a custom-designed inverted microscope, which can work both in finite and infinite tube length microscopy modes. It is shown that the spherical aberration due to the mismatch in the refractive indices of the specimen (water) and the immersion oil as well as the wavelength can be partially compensated by introducing another source for the spherical aberration provided it has the opposite sign. Changing the tube length is shown to be a good candidate for this effect: an improvement of up to a factor of four has been observed in the lateral efficiency of the trap. © 2005 Elsevier B.V. All rights reserved.Condensation of DNA-actin polyelectrolyte mixtures driven by ions of different valences.
Phys Rev E Stat Nonlin Soft Matter Phys 73:3 Pt 1 (2006) 031911
Abstract:
Multivalent ions can induce condensation of like-charged polyelectrolytes into compact states, a process that requires different ion valences for different polyelectrolyte species. In this work we examine the condensation behavior in binary anionic polyelectrolyte mixtures consisting of DNA coils and F-actin rods in the presence of monovalent, divalent, and trivalent ions. As expected, monovalent ions do not condense either component and divalent ions selectively condense F-actin rods out of the polyelectrolyte mixture. For trivalent ions, however, we observe a microphase separation between the two polyelectrolytes into coexisting finite-sized F-actin bundles and DNA toroids. Further, by increasing the DNA volume fraction in the mixture, condensed F-actin bundles can be completely destabilized, leading to only DNA condensation within the mixture. We examine a number of possible causes and propose a model based on polyelectrolyte competition for ions.Can nonlinear elasticity explain contact-line roughness at depinning?
Phys Rev Lett 96:1 (2006) 015702
Abstract:
We examine whether cubic nonlinearities, allowed by symmetry in the elastic energy of a contact line, may result in a different universality class at depinning. Standard linear elasticity predicts a roughness exponent zeta = 1/3 (one loop), zeta = 0.388 +/- 0.002 (numerics) while experiments give zeta approximately = 0.5. Within functional renormalization group methods we find that a nonlocal Kardar-Parisi-Zhang-type term is generated at depinning and grows under coarse graining. A fixed point with zeta approximately = 0.45 (one loop) is identified, showing that large enough cubic terms increase the roughness. This fixed point is unstable, revealing a rough strong-coupling phase. Experimental study of contact angles theta near pi/2, where cubic terms in the energy vanish, is suggested.The pH-induced swelling and collapse atom transfer radical polymerization
SOFT MATTER 2:12 (2006) 1076-1080