Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Prof Ramin Golestanian

Professor of Theoretical Condensed Matter Physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Ramin.Golestanian@physics.ox.ac.uk
Telephone: 01865 273974
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Max Planck Institute for Dynamics and Self-Organization
Oxford Podcast (2014): Living Matter & Theo Phys
Oxford Podcast (2017): The bacterial Viewpoint
  • About
  • Teaching
  • Publications

Evolution of growth modes for polyelectrolyte bundles.

Phys Rev Lett 98:18 (2007) 187802

Authors:

Ghee Hwee Lai, Rob Coridan, Olena V Zribi, Ramin Golestanian, Gerard CL Wong

Abstract:

Multivalent ions induce attractions between polyelectrolytes, but lead to finite-sized bundles rather than macroscopic phase separation. The kinetics of aggregation and bundle formation of actin is tracked using two different fluorescently labeled populations of F-actin. It is found that the growth mode of these bundles evolves with time and salt concentration, varying from an initial lateral growth to a longitudinal one at later stages. The results suggest that kinetics play a role in bundle growth, but not in the lateral size of bundles, which is constant for linear and branched topologies.
More details from the publisher
More details

Noncontact racK and pinion powered by the lateral Casimir force.

Phys Rev Lett 98:14 (2007) 140801

Authors:

Arash Ashourvan, MirFaez Miri, Ramin Golestanian

Abstract:

The lateral Casimir force is employed to propose a design for a potentially wear-proof rack and pinion with no contact, which can be miniaturized to the nanoscale. The robustness of the design is studied by exploring the relation between the pinion velocity and the rack velocity in the different domains of the parameter space. The effects of friction and added external load are also examined. It is shown that the device can hold up extremely high velocities, unlike what the general perception of the Casimir force as a weak interaction might suggest.
More details from the publisher
More details
Details from ArXiV

Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion.

Phys Rev E Stat Nonlin Soft Matter Phys 75:4 Pt 1 (2007) 040103

Authors:

Arash Ashourvan, Mirfaez Miri, Ramin Golestanian

Abstract:

The nonlinear dynamics of a cylindrical pinion that is kept at a distance from a vibrating rack is studied, and it is shown that the lateral Casimir force between the two corrugated surfaces can be rectified. The effects of friction and external load are taken into account, and it is shown that the pinion can do work against loads of up to a critical value, which is set by the amplitude of the lateral Casimir force. We present a phase diagram for the rectified motion that could help its experimental investigations, as the system exhibits a chaotic behavior in a large part of the parameter space.
More details from the publisher
More details
Details from ArXiV

Rod-like Polyelectrolyte Brushes with Mono- and Multivalent Counterions

ArXiv cond-mat/0701200 (2007)

Authors:

H Fazli, R Golestanian, PL Hansen, MR Kolahchi

Abstract:

A model of rod-like polyelectrolyte brushes in the presence of monovalent and multivalent counterions but with no added-salt is studied using Monte Carlo simulation. The average height of the brush, the histogram of rod conformations, and the counterion density profile are obtained for different values of the grafting density of the charge-neutral wall. For a domain of grafting densities, the brush height is found to be relatively insensitive to the density due to a competition between counterion condensation and inter-rod repulsion. In this regime, multivalent counterions collapse the brush in the form of linked clusters. Nematic order emerges at high grafting densities, resulting is an abrupt increase of the brush height.
Details from ArXiV
More details from the publisher

Designing phoretic micro- and nano-swimmers

ArXiv cond-mat/0701168 (2007)

Authors:

R Golestanian, TB Liverpool, A Ajdari

Abstract:

Small objects can swim by generating around them fields or gradients which in turn induce fluid motion past their surface by phoretic surface effects. We quantify for arbitrary swimmer shapes and surface patterns, how efficient swimming requires both surface ``activity'' to generate the fields, and surface ``phoretic mobility.'' We show in particular that (i) swimming requires symmetry breaking in either or both of the patterns of "activity" and ``mobility,'' and (ii) for a given geometrical shape and surface pattern, the swimming velocity is size-independent. In addition, for given available surface properties, our calculation framework provides a guide for optimizing the design of swimmers.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 53
  • Page 54
  • Page 55
  • Page 56
  • Current page 57
  • Page 58
  • Page 59
  • Page 60
  • Page 61
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet