Recoverable information and emergent conservation laws in fracton stabilizer codes
Physical Review B American Physical Society 97:13 (2018) 134426
Abstract:
We introduce a new quantity, that we term {\it recoverable information}, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information, as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information, and prove their equivalence. To demonstrate its utility, we compute recoverable information for {\it fracton models} using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z 2 Gauss-law type constraints, which in turn imply emergent Z 2 conservation laws for point-like quasiparticle excitations of an underlying topologically ordered phase.Topological Entanglement Entropy of Fracton Stabilizer Codes
Physical Review B American Physical Society 97 (2018) 125101
Abstract:
Entanglement entropy provides a powerful characterization of two-dimensional gapped topological phases of quantum matter, intimately tied to their description by topological quantum field theories (TQFTs). Fracton topological orders are three-dimensional gapped topologically ordered states of matter that lack a TQFT description. We show that three-dimensional fracton phases are nevertheless characterized, at least partially, by universal structure in the entanglement entropy of their ground-state wave functions. We explicitly compute the entanglement entropy for two archetypal fracton models, the “X-cube model” and “Haah's code,” and demonstrate the existence of a nonlocal contribution that scales linearly in subsystem size. We show via Schrieffer-Wolff transformations that this piece of the entanglement entropy of fracton models is robust against arbitrary local perturbations of the Hamiltonian. Finally, we argue that these results may be extended to characterize localization-protected fracton topological order in excited states of disordered fracton models.Correlation function diagnostics for type-I fracton phases
Physical Review B: Condensed Matter and Materials Physics American Physical Society 97 (2018) 041110