Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
  • About
  • Research
  • Teaching
  • Publications

Quantum Brownian motion in a quasiperiodic potential

(2019)

Authors:

Aaron J Friedman, Romain Vasseur, Austen Lamacraft, SA Parameswaran
More details from the publisher

Strong-disorder renormalization group for periodically driven systems

Physical Review B: Condensed Matter and Materials Physics American Physical Society 98:17 (2018) 174203

Authors:

W Berdanier, M Kolodrubetz, Siddharth GA Parameswaran, R Vasseur

Abstract:

Quenched randomness can lead to robust non-equilibrium phases of matter in periodically driven (Floquet) systems. Analyzing transitions between such dynamical phases requires a method capable of treating the twin complexities of disorder and discrete time-translation symmetry. We introduce a real-space renormalization group approach, asymptotically exact in the strong-disorder limit, and exemplify its use on the periodically driven interacting quantum Ising model. We analyze the universal physics near the critical lines and multicritical point of this model, and demonstrate the robustness of our results to the inclusion of weak interactions.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Kosterlitz-Thouless scaling at many-body localization phase transitions

(2018)

Authors:

Philipp T Dumitrescu, Anna Goremykina, Siddharth A Parameswaran, Maksym Serbyn, Romain Vasseur
More details from the publisher

Quantum Hall Valley Nematics

(2018)

Authors:

SA Parameswaran, BE Feldman
More details from the publisher

Floquet quantum criticality

Proceedings of the National Academy of Sciences National Academy of Sciences 115:38 (2018) 9491-9496

Authors:

W Berdanier, M Kolodrubetz, Siddharth Parameswaran, R Vasseur

Abstract:

We study transitions between distinct phases of one-dimensional periodically driven (Floquet) systems. We argue that these are generically controlled by infinite-randomness fixed points of a strong-disorder renormalization group procedure. Working in the fermionic representation of the prototypical Floquet Ising chain, we leverage infinite randomness physics to provide a simple description of Floquet (multi)criticality in terms of a distinct type of domain wall associated with time translational symmetry-breaking and the formation of “Floquet time crystals.” We validate our analysis via numerical simulations of free-fermion models sufficient to capture the critical physics.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet