Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
Hilary Term 2026: Quantum Matter 2 Course Pages
  • About
  • Research
  • Teaching
  • Publications

Topological Entanglement Entropy of Fracton Stabilizer Codes

(2017)

Authors:

Han Ma, AT Schmitz, SA Parameswaran, Michael Hermele, Rahul M Nandkishore
More details from the publisher

Correlation function diagnostics for type-I fracton phases

(2017)

Authors:

Trithep Devakul, SA Parameswaran, SL Sondhi
More details from the publisher

Filling-enforced nonsymmorphic Kondo semimetals in two dimensions

Physical Review B 96:8 (2017)

Authors:

JH Pixley, S Lee, B Brandom, SA Parameswaran

Abstract:

© 2017 American Physical Society. We study the competition between Kondo screening and frustrated magnetism on the nonsymmorphic Shastry-Sutherland Kondo lattice at a filling of two conduction electrons per unit cell. This model is known to host a set of gapless partially Kondo screened phases intermediate between the Kondo-destroyed paramagnet and the heavy Fermi liquid. Based on crystal symmetries, we argue that (i) both the paramagnet and the heavy Fermi liquid are semimetals protected by a glide symmetry; and (ii) partial Kondo screening breaks the symmetry, removing this protection and allowing the partially Kondo screened phase to be deformed into a Kondo insulator via a Lifshitz transition. We confirm these results using large-N mean-field theory and then use nonperturbative arguments to derive a generalized Luttinger sum rule constraining the phase structure of two-dimensional nonsymmorphic Kondo lattices beyond the mean-field limit.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Valley-selective Landau-Zener oscillations in semi-Dirac p − n junctions

Physical Review B American Physical Society 96:4 (2017) 045424

Authors:

K Saha, R Nandkishore, Siddharth Parameswaran

Abstract:

We study transport across p-n junctions of gapped two-dimensional semi-Dirac materials: nodal semimetals whose energy bands disperse quadratically and linearly along distinct crystal axes. The resulting electronic properties - relevant to materials such as TiO2/VO2 multilayers and α-(BEDT-TTF)2I3 salts - continuously interpolate between those of mono- and bilayer graphene as a function of propagation angle. We demonstrate that tunneling across the junction depends on the orientation of the tunnel barrier relative to the crystalline axes, leading to strongly nonmonotonic current-voltage characteristics, including negative differential conductance in some regimes. In multivalley systems, these features provide a natural route to engineering valley-selective transport.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Localization-protected order in spin chains with non-Abelian discrete symmetries

(2017)

Authors:

Aaron J Friedman, Romain Vasseur, Andrew C Potter, SA Parameswaran
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • Current page 22
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet