Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
Hilary Term 2026: Quantum Matter 2 Course Pages
  • About
  • Research
  • Teaching
  • Publications

Many-body localization, symmetry, and topology

(2018)

Authors:

SA Parameswaran, Romain Vasseur
More details from the publisher

Correlation function diagnostics for type-I fracton phases

Physical Review B: Condensed Matter and Materials Physics American Physical Society 97 (2018) 041110

Authors:

T Devakul, Siddharth A Parameswaran, SL Sondhi

Abstract:

Fracton phases are recent entrants to the roster of topological phases in three dimensions. They are characterized by subextensively divergent topological degeneracy and excitations that are constrained to move along lower dimensional subspaces, including the eponymous fractons that are immobile in isolation. We develop correlation function diagnostics to characterize Type I fracton phases which build on their exhibiting partial deconfinement. These are inspired by similar diagnostics from standard gauge theories and utilize a generalized gauging procedure that links fracton phases to classical Ising models with subsystem symmetries. En route, we explicitly construct the spacetime partition function for the plaquette Ising model which, under such gauging, maps into the X-cube fracton topological phase. We numerically verify our results for this model via Monte Carlo calculations.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Viewpoint: Topological insulators turn a corner

Physics American Physical Society 10 (2017) 1-3

Authors:

Siddharth Parameswaran, Yuan Wan
More details from the publisher
Details from ORA

Recoverable Information and Emergent Conservation Laws in Fracton Stabilizer Codes

(2017)

Authors:

AT Schmitz, Han Ma, Rahul M Nandkishore, SA Parameswaran
More details from the publisher

Non-Fermi glasses: Localized descendants of fractionalized metals

Physical Review Letters American Physical Society 119:14 (2017) 1-5

Authors:

Sid Parameswaran, S Gopalakrishnan

Abstract:

Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of "non-Fermi glasses" phases of interacting disordered fermions that are fully many-body localized (MBL), yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlators, that sharply distinguishes between the two phases even at infinite temperature. Our results and diagnostic should generically apply to the high-temperature behavior of MBL descendants of fractionalized phases.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet