Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
  • About
  • Research
  • Teaching
  • Publications

Localization-protected order in spin chains with non-Abelian discrete symmetries

Physical Review B American Physical Society 98:6 (2018) 064203

Authors:

AJ Friedman, R Vasseur, AC Potter, Siddharth Parameswaran

Abstract:

We study the nonequilibrium phase structure of the three-state random quantum Potts model in one dimension. This spin chain is characterized by a non-Abelian D 3 symmetry recently argued to be incompatible with the existence of a symmetry-preserving many-body localized (MBL) phase. Using exact diagonalization and a finite-size scaling analysis, we find that the model supports two distinct broken-symmetry MBL phases at strong disorder that either break the Z 3 clock symmetry or a Z 2 chiral symmetry. In a dual formulation, our results indicate the existence of a stable finite-temperature topological phase with MBL-protected parafermionic end zero modes. While we find a thermal symmetry-preserving regime for weak disorder, scaling analysis at strong disorder points to an infinite-randomness critical point between two distinct broken-symmetry MBL phases.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Topology- and symmetry-protected domain wall conduction in quantum Hall nematics

(2018)

Authors:

Kartiek Agarwal, Mallika T Randeria, A Yazdani, SL Sondhi, SA Parameswaran
More details from the publisher

Strong-Disorder Renormalization Group for Periodically Driven Systems

(2018)

Authors:

William Berdanier, Michael Kolodrubetz, SA Parameswaran, Romain Vasseur
More details from the publisher

Many-body localization, symmetry, and topology

Reports on Progress in Physics IOP Publishing 81:8 (2018) 082501

Authors:

Siddharth Parameswaran, R Vasseur

Abstract:

We review recent developments in the study of out-of-equilibrium topological states of matter in isolated systems. The phenomenon of many-body localization, exhibited by some isolated systems usually in the presence of quenched disorder, prevents systems from equilibrating to a thermal state where the delicate quantum correlations necessary for topological order are often washed out. Instead, many-body localized systems can exhibit a type of eigenstate phase structure wherein their entire many-body spectrum is characterized by various types of quantum order, usually restricted to quantum ground states. After introducing many-body localization and explaining how it can protect quantum order, we then explore how the interplay of symmetry and dimensionality with many-body localization constrains its role in stabilizing topological phases out of equilibrium.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Recoverable information and emergent conservation laws in fracton stabilizer codes

Physical Review B American Physical Society 97:13 (2018) 134426

Authors:

A Schmitz, H Ma, R Nandkishore, Siddharth Parameswaran

Abstract:

We introduce a new quantity, that we term {\it recoverable information}, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information, as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information, and prove their equivalence. To demonstrate its utility, we compute recoverable information for {\it fracton models} using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z 2 Gauss-law type constraints, which in turn imply emergent Z 2 conservation laws for point-like quasiparticle excitations of an underlying topologically ordered phase.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet