Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
  • About
  • Research
  • Teaching
  • Publications

Viewpoint: Topological insulators turn a corner

Physics American Physical Society 10 (2017) 1-3

Authors:

Siddharth Parameswaran, Yuan Wan
More details from the publisher
Details from ORA

Recoverable Information and Emergent Conservation Laws in Fracton Stabilizer Codes

(2017)

Authors:

AT Schmitz, Han Ma, Rahul M Nandkishore, SA Parameswaran
More details from the publisher

Non-Fermi glasses: Localized descendants of fractionalized metals

Physical Review Letters American Physical Society 119:14 (2017) 1-5

Authors:

Sid Parameswaran, S Gopalakrishnan

Abstract:

Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of "non-Fermi glasses" phases of interacting disordered fermions that are fully many-body localized (MBL), yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlators, that sharply distinguishes between the two phases even at infinite temperature. Our results and diagnostic should generically apply to the high-temperature behavior of MBL descendants of fractionalized phases.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Topological Entanglement Entropy of Fracton Stabilizer Codes

(2017)

Authors:

Han Ma, AT Schmitz, SA Parameswaran, Michael Hermele, Rahul M Nandkishore
More details from the publisher

Correlation function diagnostics for type-I fracton phases

(2017)

Authors:

Trithep Devakul, SA Parameswaran, SL Sondhi
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet