Mesoscale modelling of starch digestion
Molecular Physics Taylor & Francis ahead-of-print:ahead-of-print (2025) e2445770
Abstract:
An idealised mesoscale model of the enzymatic digestion of starch modelled as a polymer aggregate is used to study the effect of various enzyme properties, such as the enzyme efficiency, range and radius, on the rate at which monomers are released from the aggregate. Depending on the enzyme efficiency the process is found to be either reaction- or diffusion-limited. Additionally the digestion rate is found to be proportional to the volume around each bond that is accessible to the enzyme, which is determined by the range and radius of the enzyme. Simulations of uniformly mixed susceptible and resistant polymers reveal no significant effect on the digestion of the susceptible polymers due to the presence of the resistant polymers.Cell sorting in an active nematic vertex model
Physical Review Letters American Physical Society 133:24 (2024) 248401
Abstract:
We study a mixture of extensile and contractile cells using a vertex model extended to include active nematic stresses. The two cell populations phase separate over time. While phase separation strengthens monotonically with an increasing magnitude of contractile activity, the dependence on extensile activity is nonmonotonic, so that sufficiently high values reduce the extent of sorting. We interpret this by showing that extensile activity renders the system motile, enabling cells to undergo neighbor exchanges. Contractile cells that come into contact as a result are then more likely to stay connected due to an effective attraction arising from contractile activity.Self organisation of invasive breast cancer driven by the interplay of active and passive nematic dynamics
(2024)
Topologically frustrated structures in inkjet printed chiral nematic liquid crystal droplets – experiments and simulations
Soft Matter Royal Society of Chemistry (2024)
Abstract:
Director field alignment in inkjet printed droplets of chiral nematic liquid crystalline materials is investigated using both experiments and numerical simulations. Experimental investigations are performed by depositing droplets of varying sizes and pitches on homeotropic alignment layers. The competition between the bulk behaviour of the chiral nematic liquid crystal and the boundary conditions imposed by the droplet surface leads to the formation of a range of possible internal director configurations. Numerical investigations are performed using a free energy minimisation approach, and the resultant simulated polarising optical microscope images are found to agree well with experimental observations.Phase ordering in binary mixtures of active nematic fluids
Physical Review E American Physical Society 110:2 (2024) 24607