Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Mesoscale modelling of starch digestion

Molecular Physics Taylor & Francis ahead-of-print:ahead-of-print (2025) e2445770

Authors:

Muriel C van der Laan, John R Bows, Julia M Yeomans

Abstract:

An idealised mesoscale model of the enzymatic digestion of starch modelled as a polymer aggregate is used to study the effect of various enzyme properties, such as the enzyme efficiency, range and radius, on the rate at which monomers are released from the aggregate. Depending on the enzyme efficiency the process is found to be either reaction- or diffusion-limited. Additionally the digestion rate is found to be proportional to the volume around each bond that is accessible to the enzyme, which is determined by the range and radius of the enzyme. Simulations of uniformly mixed susceptible and resistant polymers reveal no significant effect on the digestion of the susceptible polymers due to the presence of the resistant polymers.
More details from the publisher
More details

Cell sorting in an active nematic vertex model

Physical Review Letters American Physical Society 133:24 (2024) 248401

Authors:

Jan Rozman, Julia M Yeomans

Abstract:

We study a mixture of extensile and contractile cells using a vertex model extended to include active nematic stresses. The two cell populations phase separate over time. While phase separation strengthens monotonically with an increasing magnitude of contractile activity, the dependence on extensile activity is nonmonotonic, so that sufficiently high values reduce the extent of sorting. We interpret this by showing that extensile activity renders the system motile, enabling cells to undergo neighbor exchanges. Contractile cells that come into contact as a result are then more likely to stay connected due to an effective attraction arising from contractile activity.
More details from the publisher
Details from ORA
More details
More details

Self organisation of invasive breast cancer driven by the interplay of active and passive nematic dynamics

(2024)

Authors:

Pablo Gottheil, Saraswat Bhattacharyya, Kolya Lettl, Philip Friedrich, Kilian Roth, Salvador Rivera-Moreno, Mario Merkel, Bahriye Aktas, Igor Sauer, Assal Daneshgar, Jonas Wieland, Hans Kubitschke, Anne-Sophie Wegscheider, Julia M Yeomans, Josef A Käs
More details from the publisher

Topologically frustrated structures in inkjet printed chiral nematic liquid crystal droplets – experiments and simulations

Soft Matter Royal Society of Chemistry (2024)

Authors:

Alva CJ Orr, Xuke Qiu, Waqas Kamal, Thomas C Sykes, Steve J Elston, Julia M Yeomans, Stephen M Morris, Alfonso A Castrejón-Pita

Abstract:

Director field alignment in inkjet printed droplets of chiral nematic liquid crystalline materials is investigated using both experiments and numerical simulations. Experimental investigations are performed by depositing droplets of varying sizes and pitches on homeotropic alignment layers. The competition between the bulk behaviour of the chiral nematic liquid crystal and the boundary conditions imposed by the droplet surface leads to the formation of a range of possible internal director configurations. Numerical investigations are performed using a free energy minimisation approach, and the resultant simulated polarising optical microscope images are found to agree well with experimental observations.
More details from the publisher
Details from ORA
More details
More details
More details

Phase ordering in binary mixtures of active nematic fluids

Physical Review E American Physical Society 110:2 (2024) 24607

Authors:

Saraswat Bhattacharyya, Julia Yeomans

Abstract:

We use a continuum, two-fluid approach to study a mixture of two active nematic fluids. Even in the absence of thermodynamically driven ordering, for mixtures of different activities we observe turbulent microphase separation, where domains form and disintegrate chaotically in an active turbulent background. This is a weak effect if there is no elastic nematic alignment between the two fluid components, but is greatly enhanced in the presence of an elastic alignment or substrate friction. We interpret the results in terms of relative flows between the two species which result from active anchoring at concentration gradients. Our results may have relevance in interpreting epithelial cell sorting and the dynamics of multispecies bacterial colonies.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet