Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Stress-shape misalignment in confluent cell layers

Nature Communications Nature Research 15:1 (2024) 3628

Authors:

Mehrana R Nejad, Liam J Ruske, Molly McCord, Jun Zhang, Guanming Zhang, Jacob Notbohm, Julia M Yeomans

Abstract:

In tissue formation and repair, the epithelium undergoes complex patterns of motion driven by the active forces produced by each cell. Although the principles governing how the forces evolve in time are not yet clear, it is often assumed that the contractile stresses within the cell layer align with the axis defined by the body of each cell. Here, we simultaneously measured the orientations of the cell shape and the cell-generated contractile stresses, observing correlated, dynamic domains in which the stresses were systematically misaligned with the cell body. We developed a continuum model that decouples the orientations of contractile stress and cell body. The model recovered the spatial and temporal dynamics of the regions of misalignment in the experiments. These findings reveal that the cell controls its contractile forces independently from its shape, suggesting that the physical rules relating cell forces and cell shape are more flexible than previously thought.
More details from the publisher
Details from ORA
More details
More details

Cell sorting by active forces in a phase-field model of cell monolayers

(2024)

Authors:

James N Graham, Guanming Zhang, Julia M Yeomans
More details from the publisher

Cell sorting by active forces in a phase-field model of cell monolayers

Soft Matter Royal Society of Chemistry 20:13 (2024) 2955-2960

Authors:

James N Graham, Guanming Zhang, Julia M Yeomans

Abstract:

Cell sorting, the segregation of cells with different properties into distinct domains, is a key phenomenon in biological processes such as embryogenesis. We use a phase-field model of a confluent cell layer to study the role of activity in cell sorting. We find that a mixture of cells with extensile or contractile dipolar activity, and which are identical apart from their activity, quickly sort into small, elongated patches which then grow slowly in time. We interpret the sorting as driven by the different diffusivity of the extensile and contractile cells, mirroring the ordering of Brownian particles connected to different hot and cold thermostats. We check that the free energy is not changed by either partial or complete sorting, thus confirming that activity can be responsible for the ordering even in the absence of thermodynamic mechanisms.
More details from the publisher
Details from ORA
More details
More details

Activity-driven tissue alignment in proliferating spheroids

Soft Matter Royal Society of Chemistry 19:5 (2023) 921-931

Authors:

Liam J Ruske, Julia M Yeomans

Abstract:

We extend the continuum theory of active nematic fluids to study cell flows and tissue dynamics inside multicellular spheroids, spherical, self-assembled aggregates of cells that are widely used as model systems to study tumour dynamics. Cells near the surface of spheroids have better access to nutrients and therefore proliferate more rapidly than those in the resource-depleted core. Using both analytical arguments and three-dimensional simulations, we find that the proliferation gradients result in flows and in gradients of activity both of which can align the orientation axis of cells inside the aggregates. Depending on environmental conditions and the intrinsic tissue properties, we identify three distinct alignment regimes: spheroids in which all the cells align either radially or tangentially to the surface throughout the aggregate and spheroids with angular cell orientation close to the surface and radial alignment in the core. The continuum description of tissue dynamics inside spheroids not only allows us to infer dynamic cell parameters from experimentally measured cell alignment profiles, but more generally motivates novel mechanisms for controlling the alignment of cells within aggregates which has been shown to influence the mechanical properties and invasive capabilities of tumors.
More details from the publisher
Details from ORA
More details
More details
More details

Viscoelastic confinement induces periodic flow reversals in active nematics

Physical Review E American Physical Society 108:6 (2023) 064611

Authors:

F Mori, S Bhattacharyya, Jm Yeomans, Sp Thampi

Abstract:

We use linear stability analysis and hybrid lattice Boltzmann simulations to study the dynamical behavior of an active nematic confined in a channel made of viscoelastic material. We find that the quiescent, ordered active nematic is unstable above a critical activity. The transition is to a steady flow state for high elasticity of the channel surroundings. However, below a threshold elastic modulus, the system produces spontaneous oscillations with periodic flow reversals. We provide a phase diagram that highlights the region where time-periodic oscillations are observed and explain how they are produced by the interplay of activity and viscoelasticity. Our results suggest experiments to study the role of viscoelastic confinement in the spatiotemporal organization and control of active matter.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet