Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Activity gradients in two- and three-dimensional active nematics

Soft Matter Royal Society of Chemistry 18 (2022) 5654-5661

Authors:

Liam J Ruske, Julia M Yeomans

Abstract:

We numerically investigate how spatial variations of extensile or contractile active stress affect bulk active nematic systems in two and three dimensions. In the absence of defects, activity gradients drive flows which re-orient the nematic director field and thus act as an effective anchoring force. At high activity, defects are created and the system transitions into active turbulence, a chaotic flow state characterized by strong vorticity. We find that in two-dimensional (2D) systems active torques robustly align +1/2 defects parallel to activity gradients, with defect heads pointing towards contractile regions. In three-dimensional (3D) active nematics disclination lines preferentially lie in the plane perpendicular to activity gradients due to active torques acting on line segments. The average orientation of the defect structures in the plane perpendicular to the line tangent depends on the defect type, where wedge-like +1/2 defects align parallel to activity gradients, while twist defects are aligned anti-parallel. Understanding the response of active nematic fluids to activity gradients is an important step towards applying physical theories to biology, where spatial variations of active stress impact morphogenetic processes in developing embryos and affect flows and deformations in growing cell aggregates, such as tumours.
More details from the publisher
Details from ORA
More details
More details

Fifty years of ‘More is different’

Nature Reviews Physics Springer Nature 4:8 (2022) 508-510

Authors:

Steven Strogatz, Sara Walker, Julia M Yeomans, Corina Tarnita, Elsa Arcaute, Manlio De Domenico, Oriol Artime, Kwang-Il Goh

Abstract:

August 1972 saw the publication of Philip Anderson’s essay ‘More is different’. In it, he crystallized the idea of emergence, arguing that “at each level of complexity entirely new properties appear” — that is, although, for example, chemistry is subject to the laws of physics, we cannot infer the field of chemistry from our knowledge of physics. Fifty years on from this landmark publication, eight scientists describe the most interesting phenomena that emerge in their fields.
More details from the publisher
Details from ORA
More details

Self-sustained oscillations of active viscoelastic matter

Journal of Physics A: Mathematical and Theoretical IOP Publishing 55:27 (2022) 275601

Authors:

Emmanuel LCVIM Plan, Huong Le Thi, Julia M Yeomans, Amin Doostmohammadi

Abstract:

Models of active nematics in biological systems normally require complexity arising from the hydrodynamics involved at the microscopic level as well as the viscoelastic nature of the system. Here we show that a minimal, space-independent, model based on the temporal alignment of active and polymeric particles provides an avenue to predict and study their coupled dynamics within the framework of dynamical systems. In particular, we examine, using analytical and numerical methods, how such a simple model can display self-sustained oscillations in an activity-driven viscoelastic shear flow.
More details from the publisher
Details from ORA
More details

Activity gradients in two- and three-dimensional active nematics

(2022)

Authors:

Liam J Ruske, Julia M Yeomans
More details from the publisher

Self-sustained oscillations of active viscoelastic matter

(2022)

Authors:

Emmanuel LC VI M Plan, Huong Le Thi, Julia M Yeomans, Amin Doostmohammadi
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet