Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Vertex model with internal dissipation enables sustained flows

(2023)

Authors:

Jan Rozman, Chaithanya KV S., Julia M Yeomans, Rastko Sknepnek
More details from the publisher

Spontaneous rotation of active droplets in two and three dimensions

PRX Life American Physical Society 1:2 (2023) 023008

Authors:

Mehrana R Nejad, Julia M Yeomans

Abstract:

We use numerical simulations and linear stability analysis to study active nematic droplets in the regime where the passive phase is isotropic. We show that activity leads to the emergence of nematic order and of spontaneous rotation in both two and three dimensions. In two dimensions the rotation is caused by the formation of a chiral +1 defect at the center of the drop. With increasing activity, the droplet deforms to an ellipse and then to a rotating annulus. Growing droplets form extended active arms which loop around to produce holes. In three dimensions the rotation is due to a disclination which loops away from and back to the surface, defining the rotation axis. In the bulk the disclination loop ends at a skyrmion. Active extensile flows deform the droplet to an oblate ellipsoid and contractile flows elongate it along the rotation axis. We compare our results on rotation in two-dimensional droplets with experiments on microtubule and motor protein suspensions and find a critical radius approximately equal to 700µm, above which the spontaneous rotation gives way to active turbulence. Comparing the simulation parameters with experiments on epithelial cell colonies shows that the crossover radius for cell colonies could be as large as 2mm, in agreement with experiments.

More details from the publisher
Details from ORA

Shape-tension coupling produces nematic order in an epithelium vertex model

Physical Review Letters American Physical Society 131:22 (2023) 228301

Authors:

Jan Rozman, Julia M Yeomans, Rastko Sknepnek

Abstract:

We study the vertex model for epithelial tissue mechanics extended to include coupling between the cell shapes and tensions in cell-cell junctions. This coupling represents an active force which drives the system out of equilibrium and leads to the formation of nematic order interspersed with prominent, long-lived +1 defects. The defects in the nematic ordering are coupled to the shape of the cell tiling, affecting cell areas and coordinations. This intricate interplay between cell shape, size, and coordination provides a possible mechanism by which tissues could spontaneously develop long-range polarity through local mechanical forces without resorting to long-range chemical patterning.
More details from the publisher
Details from ORA
More details
More details

Stress-shape misalignment in confluent cell layers

(2023)

Authors:

Mehrana R Nejad, Liam J Ruske, Molly McCord, Jun Zhang, Guanming Zhang, Jacob Notbohm, Julia M Yeomans
More details from the publisher

Active nematics with deformable particles

Soft Matter Royal Society of Chemistry 19:35 (2023) 6664-6670

Authors:

Ioannis Hadjifrangiskou, Liam J Ruske, Julia M Yeomans

Abstract:

The hydrodynamic theory of active nematics has been often used to describe the spatio-temporal dynamics of cell flows and motile topological defects within soft confluent tissues. Those theories, however, often rely on the assumption that tissues consist of cells with a fixed, anisotropic shape and do not resolve dynamical cell shape changes due to flow gradients. In this paper we extend the continuum theory of active nematics to include cell shape deformability. We find that circular cells in tissues must generate sufficient active stress to overcome an elastic barrier to deforming their shape in order to drive tissue-scale flows. Above this threshold the systems enter a dynamical steady-state with regions of elongated cells and strong flows coexisting with quiescent regions of isotropic cells.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet