Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra

Publications of the Astronomical Society of Australia Cambridge University Press 42 (2025) e062

Authors:

Konstantinos Tanidis, Jacobo Asorey, Chandra Shekhar Saraf, Catherine Laura Hale, Benedict Bahr-Kalus, David Parkinson, Stefano Camera, Ray Norris, Andrew Hopkins, Maciej Bilicki, Nikhel Gupta

Abstract:

We measured the harmonic-space power spectrum of Galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from to 500. We applied two flux density cuts at and mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18 mJy cut to deviate for due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at 5.5 , irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias and a constant amplitude galaxy bias . By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at mJy ( mJy) with ( ) and a constant amplitude bias with ( ). When is a free parameter for the same models at mJy ( mJy) with the constant model we found ( ), while with the constant amplitude model we measured ( ), respectively. Our results agree at with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.

Robustness of dark energy phenomenology across different parameterizations

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:05 (2025) 034

Authors:

William J Wolf, Carlos García-García, Pedro G Ferreira

Abstract:

The recent evidence for dynamical dark energy from DESI, in combination with other cosmological data, has generated significant interest in understanding the nature of dark energy and its underlying microphysics. However, interpreting these results critically depends on how dark energy is parameterized. This paper examines the robustness of conclusions about the viability of particular kinds of dynamical dark energy models to the choice of parameterization, focusing on four popular two-parameter families: the Chevallier-Polarski-Linder (CPL), Jassal-Bagla-Padmanabhan (JBP), Barboza-Alcaniz (BA), and exponential (EXP) parameterizations. We find that conclusions regarding the viability of minimally and non-minimally coupled quintessence models are independent of the parameterization adopted. We demonstrate this both by mapping these dark energy models into the (w 0, wa ) parameter space defined by these various parameterizations and by showing that all of these parameterizations can equivalently account for the phenomenology predicted by these dark energy models to a high degree of accuracy.

The Atacama Cosmology Telescope: semi-analytic covariance matrices for the DR6 CMB power spectra

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:05 (2025) 015

Authors:

Zachary Atkins, Zack Li, David Alonso, J Richard Bond, Erminia Calabrese, Adriaan J Duivenvoorden, Jo Dunkley, Serena Giardiello, Carlos Hervías-Caimapo, J Colin Hill, Hidde T Jense, Joshua Kim, Thibaut Louis, Kavilan Moodley, Thomas W Morris, Sigurd Naess, Michael D Niemack, Lyman Page, Adrien La Posta, Cristóbal Sifón, Edward J Wollack

Abstract:

The Atacama Cosmology Telescope Data Release 6 (ACT DR6) power spectrum is expected to provide state-of-the-art cosmological constraints, with an associated need for precise error modeling. In this paper we design, and evaluate the performance of, an analytic covariance matrix prescription for the DR6 power spectrum that sufficiently accounts for the complicated ACT map properties. We use recent advances in the literature to handle sharp features in the signal and noise power spectra, and account for the effect of map-level anisotropies on the covariance matrix. In including inhomogeneous survey depth information, the resulting covariance matrix prescription is structurally similar to that used in the Planck Cosmic Microwave Background (CMB) analysis. We quantify the performance of our prescription using comparisons to Monte Carlo simulations, finding better than 3% agreement. This represents an improvement from a simpler, pre-existing prescription, which differs from simulations by ∼ 16%. We develop a new method to correct the analytic covariance matrix using simulations, after which both prescriptions achieve better than 1% agreement. This correction method outperforms a commonly used alternative, where the analytic correlation matrix is assumed to be accurate when correcting the covariance. Beyond its use for ACT, this framework should be applicable for future high resolution CMB experiments including the Simons Observatory (SO).

Cosmic reflections I: the structural diversity of simulated and observed low-mass galaxy analogues

(2025)

Authors:

G Martin, AE Watkins, Y Dubois, J Devriendt, S Kaviraj, D Kim, K Kraljic, I Lazar, FR Pearce, S Peirani, C Pichon, A Slyz, SK Yi

Pseudo- C ℓ s for spin- s fields with component-wise weighting

The Open Journal of Astrophysics Maynooth University 8 (2025)

Abstract:

<jats:p>We present a generalisation of the standard pseudo- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>C</mml:mi><mml:mo>ℓ</mml:mo></mml:msub></mml:math> approach for power spectrum estimation to the case of spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>s</mml:mi></mml:math> fields weighted by a general positive-definite weight matrix that couples the different spin components of the field (e.g.  <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>U</mml:mi></mml:math> maps in CMB polarisation analyses, or <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>γ</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> shear components in weak lensing). Relevant use cases are, for example, data with significantly anisotropic noise properties, or situations in which different masks must be applied to the different field components. The weight matrix map is separated into a spin-0 part, which corresponds to the “mask” in the standard pseudo- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>C</mml:mi><mml:mo>ℓ</mml:mo></mml:msub></mml:math> approach, and a spin- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>2</mml:mn><mml:mi>s</mml:mi></mml:mrow></mml:math> part sourced solely by the anisotropic elements of the matrix, leading to additional coupling between angular scales and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>E</mml:mi><mml:mi>/</mml:mi><mml:mi>B</mml:mi></mml:mrow></mml:math> modes. The general expressions for the mode-coupling coefficients involving the power spectra of these anisotropic weight components are derived and validated. The generalised algorithm is as computationally efficient as the standard approach. We implement the method in the public code NaMaster.</jats:p>