Emergence and cosmic evolution of the Kennicutt-Schmidt relation driven by interstellar turbulence

(2023)

Authors:

Katarina Kraljic, Florent Renaud, Yohan Dubois, Christophe Pichon, Oscar Agertz, Eric Andersson, Julien Devriendt, Jonathan Freundlich, Sugata Kaviraj, Taysun Kimm, Garreth Martin, Sébastien Peirani, Álvaro Segovia Otero, Marta Volonteri, Sukyoung K Yi

Marginalised Normal Regression: Unbiased curve fitting in the presence of x-errors

ArXiv 2309.00948 (2023)

Authors:

Deaglan Bartlett, Harry Desmond

EDGE: the shape of dark matter haloes in the faintest galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 525:3 (2023) 3516-3532

Authors:

Matthew DA Orkney, Ethan Taylor, Justin I Read, Martin P Rey, A Pontzen, Oscar Agertz, Stacy Y Kim, Maxime Delorme

EDGE -- Dark matter or astrophysics? Clear prospects to break dark matter heating degeneracies with HI rotation in faint dwarf galaxies

(2023)

Authors:

Martin P Rey, Matthew DA Orkney, Justin I Read, Payel Das, Oscar Agertz, Andrew Pontzen, Anastasia A Ponomareva, Stacy Y Kim, William McClymont

The information on halo properties contained in spectroscopic observations of late-type galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 525:4 (2023) 5066-5079

Authors:

Tariq Yasin, Harry Desmond, Julien Devriendt, Adrianne Slyz

Abstract:

Rotation curves are the key observational manifestation of the dark matter distribution around late-type galaxies. In a halo model context, the precision of constraints on halo parameters is a complex function of properties of the measurements as well as properties of the galaxy itself. Forthcoming surveys will resolve rotation curves to varying degrees of precision, or measure their integrated effect in the HI linewidth. To ascertain the relative significance of the relevant quantities for constraining halo properties, we study the information on halo mass and concentration as quantified by the Kullback–Leibler divergence of the kinematics-informed posterior from the uninformative prior. We calculate this divergence as a function of the different types of spectroscopic observation, properties of the measurement, galaxy properties, and auxiliary observational data on the baryonic components. Using the SPARC (Spitzer Photometry & Accurate Rotation Curves) sample, we find that fits to the full rotation curve exhibit a large variation in information gain between galaxies, ranging from ~1 to ~11 bits. The variation is predominantly caused by the vast differences in the number of data points and the size of velocity uncertainties between the SPARC galaxies. We also study the relative importance of the minimum HI surface density probed and the size of velocity uncertainties on the constraining power on the inner halo density slope, finding the latter to be significantly more important. We spell out the implications of these results for the optimization of galaxy surveys aiming to constrain galaxies’ dark matter distributions, highlighting the need for precise velocity measurements.