Euclid preparation

Astronomy & Astrophysics EDP Sciences 695 (2025) ARTN A283

Authors:

B Csizi, T Schrabback, S Grandis, H Hoekstra, H Jansen, L Linke, G Congedo, An Taylor, A Amara, S Andreon, C Baccigalupi, M Baldi, S Bardelli, P Battaglia, R Bender, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, J Carretero, S Casas, Fj Castander, M Castellano, G Castignani, S Cavuoti, A Cimatti, C Colodro-Conde, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, M Cropper, A Da Silva, H Degaudenzi, G De Lucia, J Dinis, M Douspis, F Dubath, X Dupac, S Dusini, M Farina, S Farrens, F Faustini, S Ferriol, S Fotopoulou

Abstract:

To date, galaxy image simulations for weak lensing surveys usually approximate the light profiles of all galaxies as a single or double Sérsic profile, neglecting the influence of galaxy substructures and morphologies deviating from such a simplified parametric characterisation. While this approximation may be sufficient for previous data sets, the stringent cosmic shear calibration requirements and the high quality of the data in the upcoming Euclid survey demand a consideration of the effects that realistic galaxy substructures and irregular shapes have on shear measurement biases. Here we present a novel deep learning-based method to create such simulated galaxies directly from Hubble Space Telescope (HST) data. We first build and validate a convolutional neural network based on the wavelet scattering transform to learn noise-free representations independent of the point-spread function (PSF) of HST galaxy images. These can be injected into simulations of images from Euclid's optical instrument VIS without introducing noise correlations during PSF convolution or shearing. Then, we demonstrate the generation of new galaxy images by sampling from the model randomly as well as conditionally. In the latter case, we fine-tune the interpolation between latent space vectors of sample galaxies to directly obtain new realistic objects following a specific Sérsic index and half-light radius distribution. Furthermore, we show that the distribution of galaxy structural and morphological parameters of our generative model matches the distribution of the input HST training data, proving the capability of the model to produce realistic shapes. Next, we quantify the cosmic shear bias from complex galaxy shapes in Euclid-like simulations by comparing the shear measurement biases between a sample of model objects and their best-fit double-Sérsic counterparts, thereby creating two separate branches that only differ in the complexity of their shapes. Using the Kaiser, Squires, and Broadhurst shape measurement algorithm, we find a multiplicative bias difference between these branches with realistic morphologies and parametric profiles on the order of (6.9 ± 0.6)×10-3 for a realistic magnitude-Sérsic index distribution. Moreover, we find clear detection bias differences between full image scenes simulated with parametric and realistic galaxies, leading to a bias difference of (4.0 ± 0.9)×10-3 independent of the shape measurement method. This makes complex morphology relevant for stage IV weak lensing surveys, exceeding the full error budget of the Euclid Wide Survey (Δμ1,2 < 2 × 103).

Euclid preparation

Astronomy & Astrophysics EDP Sciences 695 (2025) ARTN A282

Authors:

A Ragagnin, A Saro, S Andreon, A Biviano, K Dolag, S Ettori, C Giocoli, Amc Le Brun, Ga Mamon, Bj Maughan, M Meneghetti, L Moscardini, F Pacaud, Gw Pratt, M Sereno, S Borgani, F Calura, G Castignani, M De Petris, D Eckert, Gf Lesci, J Macias-Perez, M Maturi, A Amara, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, J Carretero, S Casas, M Castellano, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, A Da Silva, H Degaudenzi, G De Lucia

Abstract:

Context. Cluster cosmology can benefit from combining multi-wavelength studies. In turn, these studies benefit from a characterisation of the correlation coefficients among different mass-observable relations. Aims. In this work, we aim to provide information on the scatter, skewness, and covariance of various mass-observable relations in galaxy clusters in cosmological hydrodynamic simulations. This information will help future analyses improve the general approach to accretion histories and projection effects, as well as to model mass-observable relations for cosmology studies. Methods. We identified galaxy clusters in Magneticum Box2b simulations with masses of M200c > 1014 M⊙ at redshifts of z = 0.24 and z = 0.90. Our analysis included Euclid-derived properties such as richness, stellar mass, lensing mass, and concentration. Additionally, we investigated complementary multi-wavelength data, including X-ray luminosity, integrated Compton-y parameter, gas mass, and temperature. We then examined the impact of projection effects on mass-observable residuals and correlations. Results. We find that at intermediate redshift (z = 0.24), projection effects have the greatest impact of lensing concentration, richness, and gas mass in terms of the scatter and skewness of the log-residuals of scaling relations. The contribution of projection effects can be significant enough to boost a spurious hot-versus cold-baryon correlations and consequently hide underlying correlations due to halo accretion histories. At high redshift (z = 0.9), the richness has a much lower scatter (of log-residuals), while the quantity that is most impacted by projection effects is the lensing mass. The lensing concentration reconstruction, in particular, is affected by deviations of the reduced-shear profile shape from that derived using a Navarro-Frenk-White (NFW) profile; the amount of interlopers in the line of sight, on the other hand, is not as important.

Euclid preparation

Astronomy & Astrophysics EDP Sciences 695 (2025) ARTN A284

Authors:

I Kovačić, M Baes, A Nersesian, N Andreadis, L Nemani, Abdurro’uf, L Bisigello, M Bolzonella, C Tortora, A van der Wel, S Cavuoti, Cj Conselice, A Enia, Lk Hunt, P Iglesias-Navarro, E Iodice, Jh Knapen, Fr Marleau, O Müller, Rf Peletier, J Román, R Ragusa, P Salucci, T Saifollahi, M Scodeggio, M Siudek, T De Waele, A Amara, S Andreon, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, P Battaglia, R Bender, C Bodendorf, D Bonino, W Bon, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, J Carretero, S Casas, Fj Castander, M Castellano, G Castignani, A Cimatti

Abstract:

The Euclid mission is generating a vast amount of imaging data in four broadband filters at a high angular resolution. This data will allow for the detailed study of mass, metallicity, and stellar populations across galaxies that will constrain their formation and evolutionary pathways. Transforming the Euclid imaging for large samples of galaxies into maps of physical parameters in an efficient and reliable manner is an outstanding challenge. Here, we investigate the power and reliability of machine learning techniques to extract the distribution of physical parameters within well-resolved galaxies. We focus on estimating stellar mass surface density, mass-averaged stellar metallicity, and age. We generated noise-free synthetic high-resolution (100 pc × 100 pc) imaging data in the Euclid photometric bands for a set of 1154 galaxies from the TNG50 cosmological simulation. The images were generated with the SKIRT radiative transfer code, taking into account the complex 3D distribution of stellar populations and interstellar dust attenuation. We used a machine learning framework to map the idealised mock observational data to the physical parameters on a pixel-by-pixel basis. We find that stellar mass surface density can be accurately recovered with a ≤0.130 dex scatter. Conversely, stellar metallicity and age estimates are, as expected, less robust, but they still contain significant information that originates from underlying correlations at a sub-kiloparsec scales between stellar mass surface density and stellar population properties. As a corollary, we show that TNG50 follows a spatially resolved mass-metallicity relation that is consistent with observations. Due to its relatively low computational and time requirements, which has a time-frame of minutes without dedicated high performance computing infrastructure once it has been trained, our method allows for fast and robust estimates of the stellar mass surface density distributions of nearby galaxies from four-filter Euclid imaging data. Equivalent estimates of stellar population properties (stellar metallicity and age) are less robust but still hold value as first-order approximations across large samples.

Euclid preparation

Astronomy & Astrophysics EDP Sciences 695 (2025) ARTN A280

Authors:

L Ingoglia, M Sereno, S Farrens, C Giocoli, L Baumont, Gf Lesci, L Moscardini, C Murray, M Vannier, A Biviano, C Carbone, G Covone, G Despali, M Maturi, S Maurogordato, M Meneghetti, M Radovich, B Altieri, A Amara, S Andreon, N Auricchio, C Baccigalupi, M Baldi, S Bardelli, F Bellagamba, R Bender, F Bernardeau, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, J Carretero, S Casas, M Castellano, G Castignani, S Cavuoti, A Cimatti, C Colodro-Conde, G Congedo, Cj Conselice, L Conversi, Y Copin, F Courbin, Hm Courtois, M Cropper, A Da Silva, H Degaudenzi, G De Lucia

Abstract:

The ability to measure unbiased weak-lensing (WL) masses is a key ingredient to exploit galaxy clusters as a competitive cosmological probe with the ESA Euclid survey or future missions. We investigate the level of accuracy and precision of cluster masses measured with the Euclid data processing pipeline. We use the DEMNUni-Cov N-body simulations to assess how well the WL mass probes the true halo mass, and, then, how well WL masses can be recovered in the presence of measurement uncertainties. We consider different halo mass density models, priors, and mass point estimates, that is the biweight, mean, and median of the marginalised posterior distribution and the maximum likelihood parameter. WL mass differs from true mass due to, for example, the intrinsic ellipticity of sources, correlated or uncorrelated matter and large-scale structure, halo triaxiality and orientation, and merging or irregular morphology. In an ideal scenario without observational or measurement errors, the maximum likelihood estimator is the most accurate, with WL masses biased low by {bM} =a-14.6-±-1.7% on average over the full range M200c > 5×1013 M⊙ and z < 1. Due to the stabilising effect of the prior, the biweight, mean, and median estimates are more precise, that is with smaller intrinsic scatter. The scatter decreases with increasing mass and informative priors can significantly reduce the scatter. Halo mass density profiles with a truncation provide better fits to the lensing signal, while the accuracy and precision are not significantly affected. We further investigate the impact of various additional sources of systematic uncertainty on the WL mass estimates, namely the impact of photometric redshift uncertainties and source selection, the expected performance of Euclid cluster detection algorithms, and the presence of masks. Taken in isolation, we find that the largest effect is induced by non-conservative source selection with {bM} =a-33.4-±-1.6%. This effect can be mostly removed with a robust selection. As a final Euclid-like test, we combine systematic effects in a realistic observational setting and find {bM} =a-15.5-±-2.4% under a robust selection. This is very similar to the ideal case, though with a slightly larger scatter mostly due to cluster redshift uncertainty and miscentering.

The CosmoVerse White Paper: Addressing observational tensions in cosmology with systematics and fundamental physics

(2025)

Authors:

Eleonora Di Valentino, Jackson Levi Said, Adam Riess, Agnieszka Pollo, Vivian Poulin, Adrià Gómez-Valent, Amanda Weltman, Antonella Palmese, Caroline D Huang, Carsten van de Bruck, Chandra Shekhar Saraf, Cheng-Yu Kuo, Cora Uhlemann, Daniela Grandón, Dante Paz, Dominique Eckert, Elsa M Teixeira, Emmanuel N Saridakis, Eoin Ó Colgáin, Florian Beutler, Florian Niedermann, Francesco Bajardi, Gabriela Barenboim, Giulia Gubitosi, Ilaria Musella, Indranil Banik, Istvan Szapudi, Jack Singal, Jaume Haro Cases, Jens Chluba, Jesús Torrado, Jurgen Mifsud, Karsten Jedamzik, Khaled Said, Konstantinos Dialektopoulos, Laura Herold, Leandros Perivolaropoulos, Lei Zu, Lluís Galbany, Louise Breuval, Luca Visinelli, Luis A Escamilla, Luis A Anchordoqui, MM Sheikh-Jabbari, Margherita Lembo, Maria Giovanna Dainotti, Maria Vincenzi, Marika Asgari, Martina Gerbino, Matteo Forconi, Michele Cantiello, Michele Moresco, Micol Benetti, Nils Schöneberg, Özgür Akarsu, Rafael C Nunes, Reginald Christian Bernardo, Ricardo Chávez, Richard I Anderson, Richard Watkins, Salvatore Capozziello, Siyang Li, Sunny Vagnozzi, Supriya Pan, Tommaso Treu, Vid Irsic, Will Handley, William Giarè, Yukei Murakami, Adèle Poudou, Alan Heavens, Alan Kogut, Alba Domi, Aleksander Łukasz Lenart, Alessandro Melchiorri, Alessandro Vadalà, Alexandra Amon, Alexander Bonilla, Alexander Reeves, Alexander Zhuk, Alfio Bonanno, Ali Övgün, Alice Pisani, Alireza Talebian, Amare Abebe, Amin Aboubrahim, Ana Luisa González Morán, András Kovács, Andreas Papatriantafyllou, Andrew R Liddle, Andronikos Paliathanasis, Andrzej Borowiec, Anil Kumar Yadav, Anita Yadav, Anjan Ananda Sen, Anjitha John William Mini Latha, Anne Christine Davis, Anowar J Shajib, Anthony Walters, Anto Idicherian Lonappan, Anton Chudaykin, Antonio Capodagli, Antonio da Silva, Antonio De Felice, Antonio Racioppi, Araceli Soler Oficial, Ariadna Montiel, Arianna Favale, Armando Bernui, Arrianne Crystal Velasco, Asta Heinesen, Athanasios Bakopoulos, Athanasios Chatzistavrakidis, Bahman Khanpour, Bangalore S Sathyaprakash, Bartek Zgirski, Benjamin L'Huillier, Benoit Famaey, Bhuvnesh Jain, Biesiada Marek, Bing Zhang, Biswajit Karmakar, Branko Dragovich, Brooks Thomas, Carlos Correa, Carlos G Boiza, Catarina Marques, Celia Escamilla-Rivera, Charalampos Tzerefos, Chi Zhang, Chiara De Leo, Christian Pfeifer, Christine Lee, Christo Venter, Cláudio Gomes, Clecio Roque De bom, Cristian Moreno-Pulido, Damianos Iosifidis, Dan Grin, Daniel Blixt, Dan Scolnic, Daniele Oriti, Daria Dobrycheva, Dario Bettoni, David Benisty, David Fernández-Arenas, David L Wiltshire, David Sanchez Cid, David Tamayo, David Valls-Gabaud, Davide Pedrotti, Deng Wang, Denitsa Staicova, Despoina Totolou, Diego Rubiera-Garcia, Dinko Milaković, Dom Pesce, Dominique Sluse, Duško Borka, Ebrahim Yusofi, Elena Giusarma, Elena Terlevich, Elena Tomasetti, Elias C Vagenas, Elisa Fazzari, Elisa GM Ferreira, Elvis Barakovic, Emanuela Dimastrogiovanni, Emil Brinch Holm, Emil Mottola, Emre Özülker, Enrico Specogna, Enzo Brocato, Erik Jensko, Erika Antonette Enriquez, Esha Bhatia, Fabio Bresolin, Felipe Avila, Filippo Bouchè, Flavio Bombacigno, Fotios K Anagnostopoulos, Francesco Pace, Francesco Sorrenti, Francisco SN Lobo, Frédéric Courbin, Frode K Hansen, Greg Sloan, Gabriel Farrugia, Gabriel Lynch, Gabriela Garcia-Arroyo, Gabriella Raimondo, Gaetano Lambiase, Gagandeep S Anand, Gaspard Poulot, Genly Leon, Gerasimos Kouniatalis, Germano Nardini, Géza Csörnyei, Giacomo Galloni, Giada Bargiacchi, Giannis Papagiannopoulos, Giovanni Montani, Giovanni Otalora, Giulia De Somma, Giuliana Fiorentino, Giuseppe Fanizza, Giuseppe Gaetano Luciano, Giuseppe Sarracino, Gonzalo J Olmo, Goran S Djordjević, Guadalupe Cañas-Herrera, Hanyu Cheng, Harry Desmond, Hassan Abdalla, Houzun Chen, Hsu-Wen Chiang, Hume A Feldman, Hussain Gohar, Ido Ben-Dayan, Ignacio Sevilla-Noarbe, Ignatios Antoniadis, Ilim Cimdiker, Inês S Albuquerque, Ioannis D Gialamas, Ippocratis Saltas, Iryna Vavilova, Isidro Gómez-Vargas, Ismael Ayuso, Ismailov Nariman Zeynalabdi, Ivan De Martino, Ivonne Zavala Carrasco, J Alberto Vázquez, Jacobo Asorey, Janusz Gluza, Javier Rubio, Jenny G Sorce, Jenny Wagner, Jeremy Sakstein, Jessica Santiago, Jim Braatz, Joan Solà Peracaula, John Blakeslee, John Webb, Jose AR Cembranos, José Pedro Mimoso, Joseph Jensen, Juan García-Bellido, Judit Prat, Kathleen Sammut, Kay Lehnert, Keith R Dienes, Kishan Deka, Konrad Kuijken, Krishna Naidoo, László Árpád Gergely, Laur Järv, Laura Mersini-Houghton, Leila L Graef, Léo Vacher, Levon Pogosian, Lilia Anguelova, Lindita Hamolli, Lu Yin, Luca Caloni, Luca Izzo, Lucas Macri, Luis E Padilla, Luz Ángela García, Maciej Bilicki, Mahdi Najafi, Manolis Plionis, Manuel Gonzalez-Espinoza, Manuel Hohmann, Marcel A van der Westhuizen, Marcella Marconi, Marcin Postolak, Marco de Cesare, Marco Regis, Marek Biesiada, Maret Einasto, Margus Saal, Maria Caruana, Maria Petronikolou, Mariam Bouhmadi-López, Mariana Melo, Mariaveronica De Angelis, Marie-Noëlle Célérier, Marina Cortês, Mark Reid, Markus Michael Rau, Martin S Sloth, Martti Raidal, Masahiro Takada, Masoume Reyhani, Massimiliano Romanello, Massimo Marengo, Mathias Garny, Matías Leizerovich, Matteo Martinelli, Matteo Tagliazucchi, Mehmet Demirci, Miguel AS Pinto, Miguel A Sabogal, Miguel A García-Aspeitia, Milan Milošević, Mina Ghodsi, Mustapha Ishak, Nelson J Nunes, Nick Samaras, Nico Hamaus, Nico Schuster, Nicola Borghi, Nicola Deiosso, Nicola Tamanini, Nicolao Fornengo, Nihan Katırcı, Nikolaos E Mavromatos, Nikolaos Petropoulos, Nikolina Šarčević, Nils A Nilsson, Noemi Frusciante, Octavian Postavaru, Oem Trivedi, Oleksii Sokoliuk, Olga Mena, Paloma Morilla, Paolo Campeti, Paolo Salucci, Paula Boubel, Paweł Bielewicz, Pekka Heinämäki, Petar Suman, Petros Asimakis, Pierros Ntelis, Pilar Ruiz-Lapuente, Pran Nath, Predrag Jovanović, Purba Mukherjee, Radosław Wojtak, Rafaela Gsponer, Rafid H Dejrah, Rahul Shah, Rasmi Hajjar, Rebecca Briffa, Rebecca Habas, Reggie C Pantig, Renier Mendoza, Riccardo Della Monica, Richard Stiskalek, Rishav Roshan, Rita B Neves, Roberto Molinaro, Roberto Terlevich, Rocco D'Agostino, Rodrigo Sandoval-Orozco, Ronaldo C Batista, Ruchika Kaushik, Ruth Lazkoz, Saeed Rastgoo, Sahar Mohammadi, Salvatore Samuele Sirletti, Sandeep Haridasu, Sanjay Mandal, Saurya Das, Sebastian Bahamonde, Sebastian Grandis, Sebastian Trojanowski, Sergei D Odintsov, Sergij Mazurenko, Shahab Joudaki, Sherry H Suyu, Shouvik Roy Choudhury, Shruti Bhatporia, Shun-Sheng Li, Simeon Bird, Simon Birrer, Simone Paradiso, Simony Santos da Costa, Sofia Contarini, Sophie Henrot-Versillé, Spyros Basilakos, Stefano Casertano, Stefano Gariazzo, Stylianos A Tsilioukas, Surajit Kalita, Suresh Kumar, Susana J Landau, Sveva Castello, Swayamtrupta Panda, Tanja Petrushevska, Thanasis Karakasis, Thejs Brinckmann, Tiago B Gonçalves, Tiziano Schiavone, Tom Abel, Tomi Koivisto, Torsten Bringmann, Umut Demirbozan, Utkarsh Kumar, Valerio Marra, Maurice HPM van Putten, Vasileios Kalaitzidis, Vasiliki A Mitsou, Vasilios Zarikas, Vedad Pasic, Venus Keus, Verónica Motta, Vesna Borka Jovanović, Víctor H Cárdenas, Vincenzo Ripepi, Vincenzo Salzano, Violetta Impellizzeri, Vitor da Fonseca, Vittorio Ghirardini, Vladas Vansevičius, Weiqiang Yang, Wojciech Hellwing, Xin Ren, Yu-Min Hu, Yuejia Zhai, Abdul Malik Sultan, Adrienn Pataki, Alessandro Santoni, Aliya Batool, Aneta Wojnar, Arman Tursunov, Avik De, Ayush Hazarika, Baojiu Li, Benjamin Bose, Bivudutta Mishra, Bobomurat Ahmedov, Chandra Shekhar Saraf, Claudia Scóccola, Crescenzo Tortora, D'Arcy Kenworthy, Daniel E Holz, David F Mota, David S Pereira, Devon M Williams, Dillon Brout, Dong Ha Lee, Eduardo Guendelman, Edward Olex, Emanuelly Silva, Emre Onur Kahya, Enzo Brocato, Eva-Maria Mueller, Felipe Andrade-Oliveira, Feven Markos Hunde, FR Joaquim, Florian Pacaud, Francis-Yan Cyr-Racine, Pozo Nuñez, F Gábor Rácz, Gene Carlo Belinario, Geraint F Lewis, Gergely Dálya, Giorgio Laverda, Guido Risaliti, Guillermo Franco-Abellán, Hayden Zammit, Hayley Camilleri, Helene M Courtois, Hooman Moradpour, Igor de Oliveira Cardoso Pedreira, Ilí dio Lopes, István Csabai, James W Rohlf, J Bogdanoska, Javier de Cruz Pérez, Joan Bachs-Esteban, Joseph Sultana, Julien Lesgourgues, Jun-Qian Jiang, Karem Peñaló Castillo, Lavinia Heisenberg, Laxmipriya Pati, Léon VE Koopmans, Lokesh kumar Duchaniya, Lucas Lombriser, María Pérez Garrote, Mariano Domínguez, Marine Samsonyan, Mark Pace, Martin Krššák, Masroor C Pookkillath, Matteo Peronaci, Matteo Piani, Matthildi Raftogianni, Meet J Vyas, Melina Michalopoulou, Merab Gogberashvili, Michael Klasen, Michele Cicoli, Michele Moresco, Miguel Quartin, Miguel Zumalacárregui, Milan S Dimitrijević, Milos Dordevic, Mindaugas Karčiauskas, Morgan Le Delliou, Nastassia Grimm, Nicolás Augusto Kozameh, Nicoleta Voicu, Nicolina Pop, Nikos Chatzifotis, Oliver Fabio Piattella, Paula Boubel, Pedro da Silveira Ferreira, Péter Raffai, Peter Schupp, Pierros Ntelis, Pradyumn Kumar Sahoo, Roberto V Maluf, Ruth Durrer, SA Kadam, Sabino Matarrese, Samuel Brieden, Santiago González-Gaitán, Santosh V Lohakare, Scott Watson, Shao-Jiang Wang, Simão Marques Nunes, Soumya Chakrabarti, Suvodip Mukherjee, Tajron Jurić, Tessa Baker, Theodoros Nakas, Tiago Barreiro, Upala Mukhopadhyay, Veljko Vujčić, Violetta Sagun, Vladimir A Srećković, Wangzheng Zhang, Yo Toda, Yun-Song Piao, Zahra Davari