Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A5

Authors:

Fj Castander, P Fosalba, J Stadel, D Potter, J Carretero, P Tallada-Crespí, L Pozzetti, M Bolzonella, Ga Mamon, L Blot, K Hoffmann, M Huertas-Company, P Monaco, Ej Gonzalez, G De Lucia, C Scarlata, M-A Breton, L Linke, C Viglione, S-S Li, Z Zhai, Z Baghkhani, K Pardede, C Neissner, R Teyssier, M Crocce, I Tutusaus, L Miller, G Congedo, A Biviano, M Hirschmann, A Pezzotta, H Aussel, H Hoekstra, T Kitching, Wj Percival, L Guzzo, Y Mellier, Pa Oesch, Raa Bowler, S Bruton, V Allevato, V Gonzalez-Perez, M Manera, S Avila, A Kovács, N Aghanim, B Altieri, A Amara, L Amendola

Abstract:

We present the Flagship galaxy mock, a simulated catalogue of billions of galaxies designed to support the scientific exploitation of the Euclid mission. Euclid is a medium-class mission of the European Space Agency optimised to determine the properties of dark matter and dark energy on the largest scales of the Universe. It probes structure formation over more than 10 billion years primarily from the combination of weak gravitational lensing and galaxy clustering data. The breadth of Euclid’s data will also foster a wide variety of scientific analyses. The Flagship simulation was developed to provide a realistic approximation to the galaxies that will be observed by Euclid and used in its scientific exploitation. We ran a state-of-the-art N-body simulation with four trillion particles, producing a lightcone on the fly. From the dark matter particles, we produced a catalogue of 16 billion haloes in one octant of the sky in the lightcone up to redshift z = 3. We then populated these haloes with mock galaxies using a halo occupation distribution and abundance-matching approach, calibrating the free parameters of the galaxy mock against observed correlations and other basic galaxy properties. Modelled galaxy properties include luminosity and flux in several bands, redshifts, positions and velocities, spectral energy distributions, shapes and sizes, stellar masses, star formation rates, metallicities, emission line fluxes, and lensing properties. We selected a final sample of 3.4 billion galaxies with a magnitude cut of HE < 26, where we are complete. We have performed a comprehensive set of validation tests to check the similarity to observational data and theoretical models. In particular, our catalogue is able to closely reproduce the main characteristics of the weak lensing and galaxy clustering samples to be used in the mission main cosmological analysis. Moreover, given its depth and completeness, this new galaxy mock also provides the community with a powerful tool for developing a wide range of scientific analyses beyond the Euclid mission.

Euclid

Astronomy & Astrophysics EDP Sciences 697 (2025) ARTN A4

Authors:

F Hormuth, K Jahnke, M Schirmer, Cg-Y Lee, T Scott, R Barbier, S Ferriol, W Gillard, F Grupp, R Holmes, W Holmes, B Kubik, J Macias-Perez, M Laurent, J Marpaud, M Marton, E Medinaceli, G Morgante, R Toledo-Moreo, M Trifoglio, Hans-Walter Rix, A Secroun, M Seiffert, P Stassi, S Wachter, Cm Gutierrez, C Vescovi, A Amara, S Andreon, N Auricchio, C Baccigalupi, M Baldi, A Balestra, S Bardelli, P Battaglia, R Bender, C Bodendorf, D Bonino, E Branchini, M Brescia, J Brinchmann, S Camera, V Capobianco, C Carbone, Vf Cardone, J Carretero, R Casas, S Casas, M Castellano, G Castignani

Abstract:

The near-infrared calibration unit (NI-CU) on board Euclid’s Near-Infrared Spectrometer and Photometer (NISP) is the first astronomical calibration lamp based on light-emitting diodes (LEDs) to be operated in space. Euclid is a mission in ESA’s Cosmic Vision 2015–2025 framework to explore the dark universe and provide a next-level characterisation of the nature of gravitation, dark matter, and dark energy. Calibrating photometric and spectrometric measurements of galaxies to better than 1.5% accuracy in a survey homogeneously mapping ∼14 000 deg2 of extragalactic sky requires a very detailed characterisation of near-infrared (NIR) detector properties as well as constant monitoring of them in flight. To cover two of the main contributions – relative pixel-to-pixel sensitivity and non-linearity characteristics – and to support other calibration activities, NI-CU was designed to provide spatially approximately homogeneous (<12% variations) and temporally stable illumination (0.1–0.2% over 1200 s) over the NISP detector plane with minimal power consumption and energy dissipation. NI-CU covers the spectral range ∼[900,1900] nm – at cryo-operating temperature – at five fixed independent wavelengths to capture wavelength-dependent behaviour of the detectors, with fluence over a dynamic range of ≳100 from ∼15 ph s−1 pixel−1 to >1500 ph s−1 pixel−1. For this functionality, NI-CU is based on LEDs. We describe the rationale behind the decision and design process, the challenges in sourcing the right LEDs, and the qualification process and lessons learned. We also provide a description of the completed NI-CU, its capabilities, and performance as well as its limits. NI-CU has been integrated into NISP and the Euclid satellite, and since Euclid’s launch in July 2023, it has started supporting survey operations.

The diversity of rotation curves of galaxies in the NewHorizon cosmological simulation

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:4 (2025) 3797-3807

Authors:

RA Jackson, JF Navarro, IME Santos-Santos, S Kaviraj, SK Yi, S Peirani, Y Dubois, G Martin, JEG Devriendt, A Slyz, C Pichon, M Volonteri, T Kimm, K Kraljic

Abstract:

We use the cosmological hydrodynamical simulation NewHorizon to study the effects of the baryonic component on the inner mass profile of dark matter haloes of isolated galaxies (). Dark matter deficits (‘cores’) develop only in galaxies in a narrow range of stellar mass, . The lower stellar mass limit arises because a minimum amount of star formation is required to drive the baryonic outflows that redistribute dark matter and create a core. The upper limit roughly coincides with the total amount of dark matter initially contained within the innermost 2 kpc (), which roughly coincides with the stellar half-mass radius of these dwarfs. This enclosed mass is quite insensitive to the total virial mass of the system. The same upper limit applies to other simulations, like NIHAO and EAGLE-CHT10, despite their rather different galaxy formation efficiencies. This suggests that it is the galaxy total stellar mass that determines when a core is formed, and not the galaxy-to-dark halo mass ratio, as argued in earlier work. This is consistent with a back-of-the-envelope estimate for a SN-induced rate of orbital diffusion. Although NewHorizon dwarfs reproduce the observed diversity of rotation curves better than other simulations, there are significant differences in the gravitational importance of baryons in the inner regions of dwarfs compared to observations. These differences prevent us from concluding that cosmological simulations are currently fully able to account for the observed diversity of rotation curve shapes.

Measurement of the power spectrum turnover scale from the cross-correlation between CMB lensing and Quaia

The Open Journal of Astrophysics Maynooth University 8 (2025)

Authors:

David Alonso, Oleksandr Hetmantsev, Giulio Fabbian, Anze Slosar, Kate Storey-Fisher

Abstract:

<jats:p>We use the projected clustering of quasars in the Gaia-unWISE quasar catalog, Quaia, and its cross-correlation with CMB lensing data from Planck, to measure the large-scale turnover of the matter power spectrum, associated with the size of the horizon at the epoch of matter-radiation equality. The turnover is detected with a significance of between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>2.3</mml:mn></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>3.1</mml:mn><mml:mi>σ</mml:mi></mml:mrow></mml:math>, depending on the method used to quantify it. From this measurement, the equality scale is determined at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo>∼</mml:mo><mml:mn>20</mml:mn><mml:mi>%</mml:mi></mml:mrow></mml:math> level. Using the turnover scale as a standard ruler alone (suppressing information from the large-scale curvature of the power spectrum), in combination with supernova data through an inverse distance ladder approach, we measure the current expansion rate to be . The addition of information coming from the power spectrum curvature approximately halves the standard ruler uncertainty. Our measurement in combination with calibrated supernovae from Pantheon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>+</mml:mo></mml:math> and SH0ES constrains the CMB temperature to be , independently of CMB data. Alternatively, assuming the value of from COBE-FIRAS, we can constrain the effective number of relativistic species in the early Universe to be .</jats:p>

JWST PRIMER: a lack of outshining in four normal z = 4 − 6 galaxies from the ALMA-CRISTAL Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2685-2706

Authors:

NEP Lines, RAA Bowler, NJ Adams, R Fisher, RG Varadaraj, Y Nakazato, M Aravena, RJ Assef, JE Birkin, D Ceverino, E da Cunha, F Cullen, I De Looze, CT Donnan, JS Dunlop, A Ferrara, NA Grogin, R Herrera-Camus, R Ikeda, AM Koekemoer, M Killi, J Li, DJ McLeod, RJ McLure

Abstract:

We present a spatially resolved analysis of four star-forming galaxies at using data from the JWST Public Release Imaging for Extragalactic Research (PRIMER) and ALMA-[C II] Resolved ISm in STar-forming galaxies with ALma (CRISTAL) surveys to probe the stellar and interstellar medium properties on the sub- scale. In the JWST NIRCam imaging we find that the galaxies are composed of multiple clumps (between 2 and ∼8) separated by , with comparable morphologies and sizes in the rest-frame ultraviolet (UV) and optical. Using BAGPIPES to perform pixel-by-pixel spectral energy distribution (SED) fitting to the JWST data, we show that the star formation rate (SFR) () and stellar mass ( ) derived from the resolved analysis are in close () agreement with those obtained by fitting the integrated photometry. In contrast to studies of lower mass sources, we thus find a reduced impact of outshining of the older (more massive) stellar populations in these normal galaxies. Our JWST analysis recovers bluer rest-frame UV slopes () and younger ages () than archival values. We find that the dust continuum from ALMA-CRISTAL seen in two of these galaxies correlates, as expected, with regions of redder rest-frame UV slopes and the SED-derived , as well as the peak in the stellar mass map. We compute the resolved –relation, showing that the IRX is consistent with the local starburst attenuation curve and further demonstrating the presence of an inhomogeneous dust distribution within the galaxies. A comparison of the CRISTAL sources to those from the FirstLight zoom-in simulation of galaxies with the same and SFR reveals similar age and colour gradients, suggesting that major mergers may be important in the formation of clumpy galaxies at this epoch.