The effect of topology on the structure and free energy landscape of DNA kissing complexes

ArXiv 1203.3577 (2012)

Authors:

Flavio Romano, Alex Hudson, Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis

Abstract:

We use a recently developed coarse-grained model for DNA to study kissing complexes formed by hybridization of complementary hairpin loops. The binding of the loops is topologically constrained because their linking number must remain constant. By studying systems with linking numbers -1, 0 or 1 we show that the average number of interstrand base pairs is larger when the topology is more favourable for the right-handed wrapping of strands around each other. The thermodynamic stability of the kissing complex also decreases when the linking number changes from -1 to 0 to 1. The structures of the kissing complexes typically involve two intermolecular helices that coaxially stack with the hairpin stems at a parallel four-way junction.

The effect of topology on the structure and free energy landscape of DNA kissing complexes

(2012)

Authors:

Flavio Romano, Alex Hudson, Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis

Synchronizing noncontact rack-and-pinion devices

Applied Physics Letters 100:11 (2012)

Authors:

M Nasiri, M Miri, R Golestanian

Abstract:

The lateral Casimir force is employed to propose a nanoscale mechanical device composed of one rack and N pinions. A coupling between the pinions via torsional springs is shown to coordinate their motion through a synchronization transition. The system can work against loads that are greater than the lateral Casimir force for each device. The existence of a stable synchronized state ensures that the system could operate in full coordination without the need of delicate fine tuning of all the characteristics such as the spring constants, the corrugation amplitudes, and the distances between the rack and the pinions. © 2012 American Institute of Physics.

The Eight-Vertex Model and Lattice Supersymmetry

Journal of Statistical Physics Springer Nature 146:6 (2012) 1122-1155

Authors:

Christian Hagendorf, Paul Fendley

Universal statistics of vortex lines.

Phys Rev E Stat Nonlin Soft Matter Phys 85:3-1 (2012) 031141

Authors:

A Nahum, JT Chalker

Abstract:

We study the vortex lines that are a feature of many random or disordered three-dimensional systems. These show universal statistical properties on long length scales, and geometrical phase transitions analogous to percolation transitions but in distinct universality classes. The field theories for these problems have not previously been identified, so that while many numerical studies have been performed, a framework for interpreting the results has been lacking. We provide such a framework with mappings to simple supersymmetric models. Our main focus is on vortices in short-range-correlated complex fields, which show a geometrical phase transition that we argue is described by the CP^{k|k} model (essentially the CP^{n-1} model in the replica limit n→1). This can be seen by mapping a lattice version of the problem to a lattice gauge theory. A related field theory with a noncompact gauge field, the 'NCCP^{k|k} model', is a supersymmetric extension of the standard dual theory for the XY transition, and we show that XY duality gives another way to understand the appearance of field theories of this type. The supersymmetric descriptions yield results relevant, for example, to vortices in the XY model and in superfluids, to optical vortices, and to certain models of cosmic strings. A distinct but related field theory, the RP^{2l|2l} model (or the RP^{n-1} model in the limit n→1) describes the unoriented vortices that occur, for instance, in nematic liquid crystals. Finally, we show that in two dimensions, a lattice gauge theory analogous to that discussed in three dimensions gives a simple way to see the known relation between two-dimensional percolation and the CP^{k|k} σ model with a θ term.